Molecular mechanisms of S100-target protein interactions.

Microsc Res Tech

Department of Pharmacology, University of South Alabama, Mobile, Alabama 36688, USA.

Published: April 2003

S100 proteins have no known enzymatic activity and exert their intracellular effects via interaction with and regulation of the activity of other proteins, termed target proteins, in both a Ca(2+)-dependent and Ca(2+)-independent manner. Structural studies have identified the linker region between the two EF-hand Ca(2+) binding domains and the C-terminus as Ca(2+)-dependent target protein binding sites in several S100 family members. In fact, C-terminal aromatic residues are obligatory for interaction of S100A1 with several of its Ca(2+)-dependent target proteins. Pharmacological studies suggest the presence of additional Ca(2+)-dependent binding motifs on some family members. A minimum of seven family members interact with and regulate the activity of aldolase A in a Ca(2+)-independent manner. In the case of S100A1, Ca(2+)-independent target protein interactions utilize a binding motif distinct from the C-terminal Ca(2+)-dependent target protein binding site. Several studies suggest that ionic interactions participate in the interaction of S100 family members with Ca(2+)-independent target proteins. While some target proteins are activated by multiple family members, other target proteins exhibit family member-specific activation, i.e., they are activated by a single family member. As predicted, family member specific interactions appear to be mediated by regions that exhibit the most divergence in amino acid sequence among family members, the linker or "hinge" region and the C terminus. Further specificity in S100-target protein interactions may arise from the different biochemical/biophysical properties of the individual family members, including affinity for metal ions (Ca(2+), Zn(2+), and Cu(2+)), oligomerization properties, heterodimerization, post-translational modifications, and lipid-binding. Delineation of the structural motifs that mediate S100-target protein interactions and determination of the in vivo relevance of these interactions are needed to fully understand the role of S100 proteins in normal and diseased cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.10297DOI Listing

Publication Analysis

Top Keywords

family members
28
target proteins
20
protein interactions
16
s100-target protein
12
ca2+-dependent target
12
target protein
12
family
10
proteins
8
s100 proteins
8
target
8

Similar Publications

Introduction: In inflammatory bowel disease (IBD), the number of eosinophils increases in the lamina propria of the intestinal tract, but their specific patho-mechanistic role remains unclear. Elevated blood eosinophil counts in active IBD suggest their potential as biomarkers for predicting response to biologic therapies. This study evaluates blood eosinophil count trends and their predictive value for clinical response and endoscopic improvement in patients with IBD receiving ustekinumab or adalimumab induction therapy.

View Article and Find Full Text PDF

Background: Acquired neurological diseases entail significant changes and influence the relationship between a patient and their significant other. In the context of long-term rehabilitation, those affected collaborate with health care professionals who are expected to have a positive impact on the lives of the affected individuals.

Objective: This study aims to examine the changes in the relationship between the patient and their loved ones due to acquired neurological disorders and the influence of health care professionals on this relationship.

View Article and Find Full Text PDF

Purpose: To compare the assessment of clinically relevant retinal and choroidal lesions as well as optic nerve pathologies using a novel three-wavelength ultra-widefield (UWF) scanning laser ophthalmoscope with established retinal imaging techniques for ophthalmoscopic imaging.

Methods: Eighty eyes with a variety of retinal and choroidal lesions were assessed on the same time point using Topcon color fundus photography (CFP) montage, Optos red/green (RG), Heidelberg SPECTRALIS MultiColor 55-color montage (MCI), and novel Optos red/green/blue (RGB). Paired images of the optic nerve, retinal, or choroidal lesions were initially diagnosed based on CFP imaging.

View Article and Find Full Text PDF

Importance: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication of COVID-19 infection. Data on midterm outcomes are limited.

Objective: To characterize the frequency and time course of cardiac dysfunction (left ventricular ejection fraction [LVEF] <55%), coronary artery aneurysms (z score ≥2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!