Rationale: The psychomotor stimulant properties of drugs are argued to be a key feature of abuse liability. Several studies, primarily using inbred strains of mice, have demonstrated genetic variation in the psychomotor stimulant properties of cocaine. As of yet, however, no gene(s) has been identified which influences this phenotype.
Objectives: The purpose of the present study was to examine a number of inbred strains of mice, including several closely related substrains, for cocaine-induced locomotor activation. Such substrain differences would suggest the possibility of a major gene effect. These data will also help to further characterize the range of genetic variation in response to cocaine.
Methods: Mice from 11 inbred strains were initially injected with saline and activity monitored for 30 min; mice were then removed from the activity monitor, injected with saline or one of six doses of cocaine, and activity was monitored for an additional 30 min.
Results: Compared to several other closely related C57BL substrains, we found the C57BL/10SnJ substrain to be significantly less activated following cocaine administration. In contrast, the C57BR/cdJ and C57L/J substrains showed extremely high levels of cocaine-induced locomotor activation.
Conclusions: The genetic similarity between C57BL/10SnJ and the other closely related C57BL substrains suggests the possibility that the aberrant behavioral response to cocaine observed in B10SnJ mice may be due to a major gene effect. Similarly, the differences found in the C57BR/cdJ and C57L/J substrains may also be influenced by a major gene. The strains examined in this study will be useful tools for identification of relevant quantitative trait loci.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00213-003-1387-0 | DOI Listing |
G3 (Bethesda)
January 2025
School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA.
The demographic history of a population, and the distribution of fitness effects (DFE) of newly arising mutations in functional genomic regions, are fundamental factors dictating both genetic variation and evolutionary trajectories. Although both demographic and DFE inference has been performed extensively in humans, these approaches have generally either been limited to simple demographic models involving a single population, or, where a complex population history has been inferred, without accounting for the potentially confounding effects of selection at linked sites. Taking advantage of the coding-sparse nature of the genome, we propose a 2-step approach in which coalescent simulations are first used to infer a complex multi-population demographic model, utilizing large non-functional regions that are likely free from the effects of background selection.
View Article and Find Full Text PDFJ Appl Genet
January 2025
Departamento de Ciências Exatas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Brazil.
Natural and artificial selection in domesticated animals can cause specific changes in genomic regions known as selection signatures. Our study used the integrated haplotype score (iHS) and Tajima's D tests within non-overlapping windows of 100 kb to identify selection signatures, in addition to genetic diversity and linkage disequilibrium estimates in 9498 sheep from breeds in Ireland (Belclare, Charollais, Suffolk, Texel, and Vendeen). The mean observed and expected heterozygosity for all the sheep breeds were 0.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
September 2024
School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
Sorghum, the fifth most important crop globally, thrives in challenging environments such as arid, saline-alkaline, and infertile regions. This remarkable crop, one of the earliest crops domesticated by humans, offers high biomass and stress-specific properties that render it suitable for a variety of uses including food, feed, bioenergy, and biomaterials. What's truly exciting is the extensive phenotypic variation in sorghum, particularly in traits related to growth, development, and stress resistance.
View Article and Find Full Text PDFEur J Pediatr
January 2025
Service de Physiologie Pédiatrique-Centre du Sommeil-CRMR Hypoventilations Alvéolaires Rares, INSERM NeuroDiderot, Université Paris-Cité, AP-HP, Hôpital Robert Debré, Paris, France.
Unlabelled: It is known that in most cases of congenital central hypoventilation syndrome (CCHS), apnoeas and hypoventilation occur at birth. Nevertheless, a detailed description of initial symptoms, including pregnancy events and diagnostic tests performed, is warranted in infants with neonatal onset of CCHS, that is, in the first month of life. The European Central Hypoventilation Syndrome Consortium created an online patient registry from which 97 infants (44 females) with CCHS of neonatal onset and PHOX2B mutation from 10 countries were selected.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
RNA endonucleases are the rate-limiting initiator of decay for many bacterial mRNAs. However, the positions of cleavage and their sequence determinants remain elusive even for the well-studied Bacillus subtilis. Here we present two complementary approaches-transcriptome-wide mapping of endoribonucleolytic activity and deep mutational scanning of RNA cleavage sites-that reveal distinct rules governing the specificity among B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!