The alpha(2)-adrenoceptor antagonist idazoxan may improve motor symptoms in Parkinson's disease and experimental Parkinsonism. We studied the effect of idazoxan on haloperidol-induced catalepsy in rats, an animal model of the drug-induced extrapyramidal side effects in man. Catalepsy was induced by a subcutaneous (s.c.) injection of haloperidol (1 mg/kg) and measured by the bar test for a maximum of 5 min. At 3 h after haloperidol, rats were given 0.16-5.0 mg/kg s.c. idazoxan, and descent latency was measured 1 h later. Idazoxan potently reversed haloperidol-induced catalepsy with an ED(50) of 0.25 mg/kg. This effect was mimicked by the selective alpha(2)-adrenoceptor antagonist RS-15385-197 (0.3 and 1 mg/kg orally). We assessed how dopaminergic mechanisms were involved in the anticataleptic effect of idazoxan by studying its effect on dopamine (DA) release in the striatum, with the microdialysis technique in conscious rats. Idazoxan (0.3 and 2.5 mg/kg) had no effect on extracellular DA and did not modify the rise of extracellular DA induced by haloperidol, indicating that changes of striatal DA release were not involved in the reversal of catalepsy. The anticataleptic effect of 2.5 mg/kg idazoxan (haloperidol+vehicle 288+/-8 s, haloperidol+idazoxan 47+/-22 s) was attenuated in rats given an intraventricular injection of 150 microg of the serotonin (5-HT) neurotoxin 5,7-dihydroxytryptamine (haloperidol+vehicle 275+/-25 s, haloperidol+idazoxan 137+/-28 s). The 5-HT(1A) receptor antagonist WAY100 635 (0.1 mg/kg s.c.) did not affect the anticataleptic effect of idazoxan. The results suggest that idazoxan reversed haloperidol-induced catalepsy by a mechanism involving blockade of alpha(2)-adrenoceptors and, at least in part, 5-HT neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.npp.1300119 | DOI Listing |
Front Mol Neurosci
December 2024
Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and University of Copenhagen, Copenhagen, Denmark.
Objective: Acetylcholine modulates the activity of the direct and indirect pathways within the striatum through interaction with muscarinic M and M receptors. M receptors are uniquely positioned to regulate plasticity within the direct pathway and play a substantial role in reward and addiction-related behaviors. However, the role of M receptors on cholinergic neurons has been less explored.
View Article and Find Full Text PDFNeurol Int
December 2024
Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, Brazil.
Background/objectives: Antipsychotic medicines are used to treat several psychological disorders and some symptoms caused by dementia and schizophrenia. Haloperidol (Hal) is a typical antipsychotic usually used to treat psychosis; however, its use causes motor or extrapyramidal symptoms (EPS) such as catalepsy. Hal blocks the function of presynaptic D2 receptors on cholinergic interneurons, leading to the release of acetylcholine (ACh), which is hydrolyzed by the enzyme acetylcholinesterase (AChE).
View Article and Find Full Text PDFMol Neurobiol
November 2024
Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
Clavulanic acid (ClvA), a beta-lactamase inhibitor, is being explored for its significant neuroprotective potential. The effects of ClvA were assessed both individually and in combination with crocin (Cr), an antioxidant derived from saffron, in the context of tardive dyskinesia (TD). In rat haloperidol (Hp)-induced-TD (1 mg/kg, i.
View Article and Find Full Text PDFJ Pharmacol Sci
October 2024
Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan. Electronic address:
J Neurosci
August 2024
Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, California 95616
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!