Arabidopsis and Medicago truncatula represent sister clades within the dicot subclass Rosidae. We used genetic map-based and bacterial artificial chromosome sequence-based approaches to estimate the level of synteny between the genomes of these model plant species. Mapping of 82 tentative orthologous gene pairs reveals a lack of extended macrosynteny between the two genomes, although marker collinearity is frequently observed over small genetic intervals. Divergence estimates based on non-synonymous nucleotide substitutions suggest that a majority of the genes under analysis have experienced duplication in Arabidopsis subsequent to divergence of the two genomes, potentially confounding synteny analysis. Moreover, in cases of localized synteny, genetically linked loci in M. truncatula often share multiple points of synteny with Arabidopsis; this latter observation is consistent with the large number of segmental duplications that compose the Arabidopsis genome. More detailed analysis, based on complete sequencing and annotation of three M. truncatula bacterial artificial chromosome contigs suggests that the two genomes are related by networks of microsynteny that are often highly degenerate. In some cases, the erosion of microsynteny could be ascribed to the selective gene loss from duplicated loci, whereas in other cases, it is due to the absence of close homologs of M. truncatula genes in Arabidopsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC166867PMC
http://dx.doi.org/10.1104/pp.102.016436DOI Listing

Publication Analysis

Top Keywords

medicago truncatula
8
bacterial artificial
8
artificial chromosome
8
arabidopsis
6
truncatula
5
syntenic relationships
4
relationships medicago
4
truncatula arabidopsis
4
arabidopsis reveal
4
reveal extensive
4

Similar Publications

Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis.

View Article and Find Full Text PDF

Multiprotein bridging factor 1 (MBF1) is a transcription factor family playing crucial roles in plant development and stress responses. In this study, we analyzed MBF1 genes in and under abiotic stresses, revealing evolutionary patterns and functional differences. Four genes were identified in and two in , with conserved MBF1 and HTH domains, similar exon/intron structures, and stress-related -elements in their promoters.

View Article and Find Full Text PDF

Suppression of Nodule Formation by RNAi Knock-Down of in .

Genes (Basel)

January 2025

Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.

Background/objectives: The balanced regulation of innate immunity plays essential roles in rhizobial infection and the establishment and maintenance of symbiosis. The evolutionarily conserved cell death suppressor Bax inhibitor-1 plays dual roles in nodule symbiosis, providing a valuable clue in balancing immunity and symbiosis, while it remains largely unexplored in the legume .

Methods/results: In the present report, the gene family of was identified and characterized.

View Article and Find Full Text PDF

[Construction and application of an inducible transcriptional regulatory tool from in ].

Sheng Wu Gong Cheng Xue Bao

January 2025

Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Transcriptional regulation based on transcription factors is an effective regulatory method widely used in microbial cell factories. Currently, few naturally transcriptional regulatory elements have been discovered from and applied. Moreover, the discovered elements cannot meet the demand for specific metabolic regulation of exogenous compounds due to the high background expression or narrow dynamic ranges.

View Article and Find Full Text PDF

The impact of arbuscular mycorrhizal colonization on flooding response of .

Front Plant Sci

January 2025

Department of General and Applied Botany, Institute of Biology, Leipzig University, Leipzig, Germany.

Climate change is expected to lead to an increase in precipitation and flooding. Consequently, plants that are adapted to dry conditions have to adjust to frequent flooding periods. In this study, we investigate the flooding response of , a Mediterranean plant adapted to warm and dry conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!