Growth promoting effect of thioredoxin on intestinal epithelial cells.

Dig Dis Sci

Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyoto University, Graduate School of Medicine, 54 Shogoin-Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.

Published: February 2003

AI Article Synopsis

  • * In experiments, male Wistar rats were treated with dithizone, and messenger RNAs were extracted to create a cDNA library, which was then tested on human intestinal cells (Caco-2) to find growth factors.
  • * One significant finding was the rat thioredoxin (TRX) gene, which promoted growth in Caco-2 cells, and its expression was linked to the healing process in the intestines after Paneth cell destruction.

Article Abstract

Paneth cells are located at the bases of intestinal crypts, and their cytoplasmic granules contain large amounts of zinc. We previously showed that administration of diphenylthiocarbazone (dithizone), a zinc chelater, to rats induced the selective death of Paneth cells. This was followed by a transient wave of epithelial cell proliferation in the entire crypts. In the study described here, we again applied this experimental model in an attempt to identify novel growth-promoting factors in the small intestine. Male Wistar rats were injected with dithizone and killed 6 hr later. Messenger RNAs (mRNAs) were extracted from the terminal ileum for the construction of a cDNA library. This library was then transfected into the human intestinal cell line Caco-2, and the cells that continued to grow in the medium containing only 1% FBS were cloned. One of the cDNA sequences identified from those transfection experiments was the full-length rat thioredoxin (TRX) gene. To confirm the growth-promoting effect of this cDNA, we transfected it into Caco-2 cells again. These clones proliferated in the medium containing only 1% FBS, while the control clones failed to show any growth. Transient oxidative stress exerted by the addition of oxidative reagents diamide and hydrogen peroxide partially suppressed the growth of TRX-transfected cells. Northern hybridization analysis revealed that TRX expression in rat ileum after dithizone treatment was altered in accordance with intestinal epithelial regeneration in the crypts. Single-cell RT-PCR also showed TRX mRNA expression in Paneth cells. These studies identify rat thioredoxin as a growth-promoting factor for intestinal epithelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1021952132241DOI Listing

Publication Analysis

Top Keywords

intestinal epithelial
12
paneth cells
12
cells
8
epithelial cells
8
caco-2 cells
8
medium fbs
8
rat thioredoxin
8
intestinal
5
growth promoting
4
promoting thioredoxin
4

Similar Publications

Background/objectives: Polyphenols represent a new strategy of dietary intervention for heat stress regulation.

Methods: The metabolic and genetic effects of three heat stress-regulated mung bean polyphenols on mouse small intestinal epithelial Mode-k cells were investigated by metabolomics-transcriptomics correlation analysis at different heat stress levels.

Results: Lipid metabolism, energy metabolism, and nervous system pathways were the key metabolic regulatory pathways.

View Article and Find Full Text PDF

The present study aimed to investigate the ability of an aqueous extract derived from mustard seed meal to counteract the effects of endotoxin lipopolysaccharide (LPS) on the intestinal epithelium. Caco-2 cells were cultured together with HT29-MTX and used as a cellular model to analyze critical intestinal parameters, such as renewal, integrity, innate immunity, and signaling pathway. Byproducts of mustard seed oil extraction are rich in soluble polysaccharides, proteins, allyl isothiocyanates, and phenolic acids, which are known as powerful antioxidants with antimicrobial and antifungal properties.

View Article and Find Full Text PDF

The intervention of B. longum metabolites in Fnevs' carcinogenic capacity: A potential double-edged sword.

Exp Cell Res

January 2025

Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China. Electronic address:

Colorectal cancer (CRC) ranks among the most prevalent malignant tumors globally. Fusobacterium nucleatum and its metabolites are effective biological targets for colon cancer promotion. Probiotics such as Bifidobacterium can block the occurrence and development of CRC by regulating the host intestinal mucosal immunity, eliminating carcinogens, and interfering with tumor cell proliferation and apoptosis.

View Article and Find Full Text PDF

Prostaglandin E receptor type 4 (EP4) agonists have been shown to be effective in treating experimental ulcerative colitis (UC) in animals and in human clinical trials, but their development has been impeded by unacceptable systemic side effects. In this study, a series of methylene phosphate prodrugs of a highly potent and selective prostaglandin EP4 receptor agonist were designed to target and remain localized in the gastrointestinal (GI) tract after either oral or rectal instillation. The prodrugs were designed to be converted to liberate active EP4 agonist by intestinal alkaline phosphate (IAP), a ubiquitous enzyme found at the luminal of the intestinal wall thus exposing the colon epithelial barrier while reducing systemic exposure to the active agonist.

View Article and Find Full Text PDF

The oral administration of drugs for cancer therapy can maintain optimal blood concentrations, is biologically safe and simple, and is preferred by many patients. However, the complex lumen environment, mucus layer, and intestinal epithelial cells are biological barriers that hinder the absorption of orally administered drugs. In this study, sea urchin-like manganese-doped copper selenide nanoparticles (Mn-CuSe NPs) were designed using an anion exchange method and coated with calcium alginate and chitosan (AC) to form Mn-CuSe@AC capsules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!