Background: Ischemic preconditioning (IP) is gaining more acceptance as a protective method in beating heart surgery. Yet it remains controversial whether preconditioning can attenuate myocardial dysfunction during reperfusion after severe coronary hypoperfusion. We examined this issue and also the issue of whether this protection is mediated by adenosine A1 receptors.
Methods: In isolated, blood-perfused rabbit hearts, the effects of IP (3 minutes of no flow ischemia and 8 minutes of reperfusion) during 30 minutes of coronary hypoperfusion and 60 minutes of reperfusion were investigated. In two groups (n = 8 each) with and without (control group) preconditioning, ventricular function was assessed by load-insensitive measures: slope of the end-systolic pressure-volume relation (Emax), slope of the stroke work/end-diastolic volume relation (Mw), and end-diastolic pressure-volume relation. External efficiency was calculated, and contractile efficiency was assessed using the reciprocal of the myocardial oxygen consumption-pressure-volume area relationship. To investigate the possible role of adenosine, the adenosine A1 receptor antagonist DPCPX (2.5 micromol/L) was administered before preconditioning in a third group (n = 7).
Results: The effects of hypoperfusion on systolic function, diastolic function (dP/dtmin, end-diastolic pressure-volume relation), external efficiency, and contractile efficiency were similar in both the IP and control groups. Lactate efflux was significantly reduced after preconditioning (p = 0.02). During reperfusion, recovery of systolic function and coronary flow were significantly improved in the IP group compared with controls: aortic flow, 85% versus 63% (p = 0.01); dP/dtmax, 91% versus 67% (p = 0.001); pressure-volume area, 97% versus 68% (p = 0.01); Emax, 74% versus 62% (p = 0.03); and Mw, 94% versus 84% (p = 0.04). Release of creatine kinase was reduced in the IP group, 9.6 +/- 1.3 U x 5 min(-1) x 100 g(-1) wet weight, versus controls, 12.7 +/- 2.7 U x 5 min(-1) x 100 g(-1) wet weight (p = 0.04). During reperfusion, contractile efficiency (p = 0.03) and external efficiency (p = 0.02) recovered better in preconditioned than in untreated hearts. Recovery was less pronounced in the DPCPX group compared with the IP group (p, not significant).
Conclusions: The results, derived from load-insensitive measures, confirm that IP provides protection after episodes of severe hypoperfusion by attenuating systolic dysfunction without improving diastolic dysfunction and reduces the severity of anaerobic metabolism as well as ischemic injury. Contractile efficiency and external efficiency both indicate improved energetics after IP (oxygen utilization by the contractile apparatus). The protective effect, at least in part, is mediated by adenosine A1 receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0003-4975(02)03882-1 | DOI Listing |
Chem Sci
January 2025
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
The efficient harvesting of triplet excitons is key to realizing high efficiency blue fluorescent organic light-emitting diodes (OLEDs). Triplet-triplet annihilation (TTA) up-conversion is one of the effective triplet-harvesting strategies. However, during the TTA up-conversion process, a high current density is necessary due to the competitive non-radiative triplet losses.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin, China.
Objective: Although pegylated interferon α-2b (PEG-IFN α-2b) therapy for chronic hepatitis B has received increasing attention, determining the optimal treatment course remains challenging. This research aimed to develop an efficient model for predicting interferon (IFN) treatment course.
Methods: Patients with chronic hepatitis B, undergoing PEG-IFN α-2b monotherapy or combined with NAs (Nucleoside Analogs), were recruited from January 2018 to December 2023 at Tianjin Third Central Hospital.
ACS Omega
January 2025
Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
Carbon dots (CDs) derived from natural products have attracted considerable interest as eco-friendly materials with a wide range of applications, such as bioimaging, sensors, catalysis, and solar energy harvesting. Among these applications, electroluminescence (EL) is particularly desirable for light-emitting devices in display and lighting technologies. Typically, EL devices incorporating CDs feature a layered structure, where CDs function as the central emissive layer, flanked by charge transport layers and electrodes.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
Ternary copper halides with an eco-friendly property have emerged as attractive candidates to replace toxic lead-containing perovskites for light-emitting diodes (LEDs), yet achieving long-wavelength electroluminescence remains unexplored. Herein, we report the first realization of orange-emitting LEDs (595 nm) based on nontoxic organic-inorganic PEACuI (PEA = β-phenylethylamine) films enabled by a nonionic surfactant poly(propylene glycol) bis(2-aminopropyl ether) (APPG) chemisorption. Experimental and theoretical analyses rationalize that the APPG additive has strong chemisorption with the Cu-I framework within the grain boundaries of PEACuI films, which not only improves the film's morphology but also passivates the iodine vacancy defects.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), School of Mechanical Engineering, Shandong University, Jinan, 250061, People's Republic of China.
The supercritical antisolvent (SAS) method can effectively improve the bioavailability of poorly water-soluble drugs. However, the current supercritical equipment and processes were not fully developed, making industrialization difficult to achieve. Therefore, an externally adjustable annular gap nozzle and its supporting equipment were designed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!