Purpose Of Review: Apolipoprotein A-II, the second major HDL apolipoprotein, was often considered of minor importance relatively to apolipoprotein A-I and its role was controversial. This picture is now rapidly changing, due to novel polymorphisms and mutations, to the outcome of clinical trials, and to studies with transgenic mice.

Recent Findings: The -265 T/C polymorphism supports a role for apolipoprotein A-II in postprandial very-low-density lipoprotein metabolism. Fibrates, which increase apolipoprotein A-II synthesis, significantly decrease the incidence of major coronary artery disease events, particularly in subjects with low HDL cholesterol, high plasma triglyceride, and high body weight. The comparison of transgenic mice overexpressing human or murine apolipoprotein A-II has highlighted major structural differences between the two proteins; they have opposite effects on HDL size, apolipoprotein A-I content, plasma concentration, and protection from oxidation. Human apolipoprotein A-II is more hydrophobic, displaces apolipoprotein A-I from HDL, accelerates apolipoprotein A-I catabolism, and its plasma concentration is decreased by fasting. Apolipoprotein A-II stimulates ATP binding cassette transporter 1-mediated cholesterol efflux. Human and murine apolipoprotein A-II differently affect glucose metabolism and insulin resistance. A novel beneficial role for apolipoprotein A-II in the pathogenesis of hepatitis C virus has been shown.

Summary: The hydrophobicity of human apolipoprotein A-II is a key regulatory factor of HDL metabolism. Due to the lower plasma apolipoprotein A-II concentration during fasting, measurements of apolipoprotein A-II in fed subjects are more relevant. More clinical studies are necessary to clarify the role of apolipoprotein A-II in well-characterized subsets of patients and in the insulin resistance syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00041433-200304000-00008DOI Listing

Publication Analysis

Top Keywords

apolipoprotein a-ii
52
apolipoprotein
18
apolipoprotein a-i
16
insulin resistance
12
a-ii
12
role apolipoprotein
12
human murine
8
murine apolipoprotein
8
plasma concentration
8
human apolipoprotein
8

Similar Publications

Evaluating serum proteinogram methodologies for the diagnosis of inflammation in fish: Acute and chronic patterns in gilthead seabream (Sparus aurata) injected with λ-carrageenan.

Fish Shellfish Immunol

December 2024

Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain. Electronic address:

Proteinogram is a semiquantitative method specially used in clinic to separate the serum proteins from patients for use in the diagnosis of diseases. However, this methodology has only been applied very recently with this approach in farmed fish. Thus, the aim of this study was to explore the changes in the serum proteinogram of gilthead seabream (Sparus aurata), after triggering an acute or chronic sterile inflammation.

View Article and Find Full Text PDF

Identifying biomarkers for Alzheimer's disease (AD) is crucial, due to its complex pathology, which involves dysfunction in lipid transport, contributing to neuroinflammation, synaptic loss, and impaired amyloid-β clearance. Nuclear magnetic resonance (NMR) is able to quantify and stratify lipoproteins. The study investigated lipoproteins in blood from AD patients, aiming to evaluate their diagnostic potential.

View Article and Find Full Text PDF

APOA2 increases cholesterol efflux capacity to plasma HDL by displacing the C-terminus of resident APOA1.

J Lipid Res

December 2024

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA; Department of Neurology, Oregon Health and Science University, Portland, OR, USA. Electronic address:

The ability of high-density lipoprotein (HDL) to promote cellular cholesterol efflux is a more robust predictor of cardiovascular disease protection than HDL-cholesterol levels in plasma. Previously, we found that lipidated HDL containing both apolipoprotein A-I (APOA1) and A-II (APOA2) promotes cholesterol efflux via the ATP-binding cassette transporter (ABCA1). In the current study, we directly added purified, lipid-free APOA2 to human plasma and found a dose-dependent increase in whole plasma cholesterol efflux capacity.

View Article and Find Full Text PDF

Favourable HDL composition in endurance athletes is not associated with changes in HDL in vitro antioxidant and endothelial anti-inflammatory function.

Biosci Rep

October 2024

School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom.

Given the failure of high-density lipoprotein (HDL) raising therapies to reduce cardiovascular disease risk, attention has turned towards HDL composition and vascular protective functions. In individuals with insulin resistance, exercise interventions recover HDL function. However, the effect of exercise on HDL in otherwise healthy individuals is unknown.

View Article and Find Full Text PDF

Background And Aims: The structure-function relationships of high-density lipoprotein (HDL) subpopulations are not well understood. Our aim was to examine the interrelationships between HDL particle proteome and HDL functionality in subjects with and without coronary heart disease (CHD).

Methods: We isolated 5 different HDL subpopulations based on charge, size, and apolipoprotein A1 (APOA1) content from the plasma of 33 overweight/obese CHD patients and 33 age-and body mass index (BMI)-matched CHD-free subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!