The RasGAP-associated endoribonuclease G3BP assembles stress granules.

J Cell Biol

Institut de Génétique Moléculaire de Montpellier, UMR 5535 du CNRS, IFR 122, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France.

Published: March 2003

Stress granules (SGs) are formed in the cytoplasm in response to various toxic agents, and are believed to play a critical role in the regulation of mRNA metabolism during stress. In SGs, mRNAs are stored in an abortive translation initiation complex that can be routed to either translation initiation or degradation. Here, we show that G3BP, a phosphorylation-dependent endoribonuclease that interacts with RasGAP, is recruited to SGs in cells exposed to arsenite. G3BP may thus determine the fate of mRNAs during cellular stress. Remarkably, SG assembly can be either dominantly induced by G3BP overexpression, or on the contrary, inhibited by expressing a central domain of G3BP. This region binds RasGAP and contains serine 149, whose dephosphorylation is induced by arsenite treatment. Critically, a phosphomimetic mutant (S149E) fails to oligomerize and to assemble SGs, whereas a nonphosphorylatable G3BP mutant (S149A) does both. These results suggest that G3BP is an effector of SG assembly, and that Ras signaling contributes to this process by regulating G3BP dephosphorylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2173781PMC
http://dx.doi.org/10.1083/jcb.200212128DOI Listing

Publication Analysis

Top Keywords

g3bp
8
stress granules
8
translation initiation
8
rasgap-associated endoribonuclease
4
endoribonuclease g3bp
4
g3bp assembles
4
stress
4
assembles stress
4
granules stress
4
sgs
4

Similar Publications

G3BP-driven RNP granules promote inhibitory RNA-RNA interactions resolved by DDX3X to regulate mRNA translatability.

Mol Cell

December 2024

Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden 01307 Saxony, Germany. Electronic address:

Ribonucleoprotein (RNP) granules have been linked to translation regulation and disease, but their assembly and regulatory mechanisms are not well understood. Here, we show that the RNA-binding protein G3BP1 preferentially interacts with unfolded RNA, driving the assembly of RNP granule-like condensates that establish RNA-RNA interactions. These RNA-RNA interactions limit the mobility and translatability of sequestered mRNAs and stabilize the condensates.

View Article and Find Full Text PDF

SARS-CoV-2 N protein recruits G3BP to double membrane vesicles to promote translation of viral mRNAs.

Nat Commun

December 2024

Division of Virology and Immunology, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.

Ras-GTPase-activating protein SH3-domain-binding proteins (G3BP) are critical for the formation of stress granules (SGs) through their RNA- and ribosome-binding properties. SARS-CoV-2 nucleocapsid (N) protein exhibits strong binding affinity for G3BP and inhibits infection-induced SG formation soon after infection. To study the impact of the G3BP-N interaction on viral replication and pathogenesis in detail, we generated a mutant SARS-CoV-2 (RATA) that specifically lacks the G3BP-binding motif in the N protein.

View Article and Find Full Text PDF

The crosstalk between the cells and the extracellular matrix (ECM) is bidirectional and consists of a pushing/pulling stretch exerted by the cells and a mechanical resistance counteracted by the surrounding microenvironment. It is widely recognized that the stiffness of the ECM, its viscoelasticity, and its overall deformation are the most important traits influencing the response of the cells. Here these three parameters are combined into a concept of elastic energy, which in biological terms represents the mechanical feedback that cells perceive when the ECM is deformed.

View Article and Find Full Text PDF

Stress granules (SGs) are macromolecular assemblies that form under cellular stress. Formation of these membraneless organelles is driven by the condensation of RNA and RNA-binding proteins such as G3BPs. G3BPs form SGs following stress-induced translational arrest.

View Article and Find Full Text PDF

Getah virus Nsp3 binds G3BP to block formation of bona fide stress granules.

Int J Biol Macromol

November 2024

Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China. Electronic address:

Stress granules (SGs) are cytoplasmic aggregates of proteins and mRNA that form in response to diverse environmental stressors, including viral infections. Several viruses possess the ability to block the formation of stress granules by targeting the SGs marker protein G3BP. However, the molecular functions and mechanisms underlying the regulation of SGs formation by Getah virus (GETV) remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!