Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The neocortex is divided into multiple areas with specific architecture, molecular identity and pattern of connectivity with the dorsal thalamus. Gradients of transcription factor expression in the cortical primordium regulate molecular regionalization and potentially the patterning of thalamic projections. We show that reduction of Fgf8 levels in hypomorphic mouse mutants shifts early gradients of gene expression rostrally, thereby modifying the molecular identity of rostral cortical progenitors. This shift correlates with a reduction in the size of a molecularly defined rostral neocortical domain and a corresponding rostral expansion of more caudal regions. Despite these molecular changes, the topography of projections between the dorsal thalamus and rostral neocortex in mutant neonates appears the same as the topography of wild-type littermates. Overall, our study demonstrates the role of endogenous Fgf8 in regulating early gradients of transcription factors in cortical progenitor cells and in molecular regionalization of the cortical plate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.00416 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!