Mechanism of S-nitrosation of recombinant human brain calbindin D28K.

Biochemistry

Department of Chemistry and Biochemistry, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec, Canada H3G 1M8.

Published: March 2003

Mass spectrometry and UV-vis absorption results support a mechanism for NO donation by S-nitrosoglutathione (GSNO) to recombinant human brain calbindin D(28K) (rHCaBP) that requires the presence of trace copper, added as either Cu,Zn-superoxide dismutase (CuZnSOD) or CuSO(4). The extent of copper-catalyzed rHCaBP S-nitrosation depends on the ratio of protein to GSNO and on the reaction time, and NO-transfer is prevented when copper chelators are present. CuZnSOD is an efficient catalyst of rHCaBP S-nitrosation, and the mechanism of CuZnSOD-catalyzed S-nitrosation involves reduction of the active-site Cu(II) by a number of the five free thiols in rHCaBP, giving rise to thiyl radicals. The Cu(I)ZnSOD formed catalyzes the reductive cleavage of GSNO present in solution to give GSH and release NO. rHCaBP thiyl radicals react with NO to yield the S-nitrosoprotein. Cu(II)ZnSOD is also reduced by GSH in a concentration-dependent manner up to 5 mM but not at higher GSH concentrations. However, unlike the rHCaBP thiyl radicals, GS(*) radicals dimerize to GSSG faster than their reaction with NO. The data presented here provide a biologically relevant mechanism for protein S-nitrosation by small S-nitrosothiols. S-nitrosation is rapidly gaining recognition as a major form of protein posttranslational modification, and the efficient S-nitrosation of CaBP by CuZnSOD/GSNO is speculated to be of neurochemical importance given that CaBP and CuZnSOD are abundant in neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0269963DOI Listing

Publication Analysis

Top Keywords

thiyl radicals
12
recombinant human
8
human brain
8
brain calbindin
8
calbindin d28k
8
rhcabp s-nitrosation
8
rhcabp thiyl
8
rhcabp
6
s-nitrosation
6
mechanism
4

Similar Publications

Thiyl radicals are important reactive sulfur species and can cause cis to trans isomerization on unsaturated fatty acids. However, biocompatible strategies for the controlled generation of thiyl radicals are still lacking. In this work, we report the study of a series of naphthacyl-derived thioethers as photo-triggered thiyl radical precursors.

View Article and Find Full Text PDF

Disulfide bonds (S-S) play a critical role in modern biochemistry, organic synthesis and prebiotic chemistry. Traditional methods for synthesizing disulfide bonds often rely on oxygen, alkali, and metal catalysts. Herein, thiol groups involved in amino acids and peptides were spontaneously converted into symmetrical and unsymmetrical disulfide bonds within water microdroplets, without the need for catalysts or oxygen, and under room temperature.

View Article and Find Full Text PDF

Dication Disulfuranes as Photoactivatable Sources of Radical Organocatalysts.

Angew Chem Int Ed Engl

January 2025

ICBMS, UMR 5246, Universite Claude Bernard Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS UMR 5246, Villeurbanne, F-69100, France.

The recent development of photoredox and energy transfer catalysis has led to a significant expansion of visible-light-driven chemical transformations. These methods have demonstrated exceptional efficiency in converting a wide range of substrates into radical intermediates and generating open-shell catalytic species. However, the simplification of catalytic systems and the direct generation of highly reactive radical organocatalysts through direct visible-light irradiation from stable precatalysts remains largely an unrealized goal.

View Article and Find Full Text PDF

Mercury adsorption study and DFT calculations of sulfur-containing biomass composites prepared by inverse vulcanization.

Int J Biol Macromol

November 2024

Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China; College of New Energy and Materials, Ningde Normal University, Ningde, Fujian 352100, PR China. Electronic address:

This study introduces an innovative and cost-effective biomass adsorbent, the sulfur/cardanol/potato starch composite (SCP), synthesized through inverse vulcanization for the remediation of mercury-contaminated waters. The SCP was characterized using Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS), Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric Analysis (TGA) and X-ray Diffraction (XRD) to confirm its composition, morphology, and properties. The adsorption capacity of SCP for Hg(II) was 246.

View Article and Find Full Text PDF

The photolysis of disulfide bonds is implicated in denaturation of proteins exposed to ultraviolet light. Despite this biological relevance in stabilizing the structure of many proteins, the mechanisms of disulfide photolysis are still contested after decades of research. Herein, we report new insight into the photochemistry of L-cystine in aqueous solution by femtosecond X-ray absorption spectroscopy at the sulfur K-edge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!