A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of intermediate pathways of 4-hydroxynonenal metabolism in the rat. | LitMetric

Identification of intermediate pathways of 4-hydroxynonenal metabolism in the rat.

Chem Res Toxicol

Laboratoire des Xénobiotiques, UMR 1089, INRA-Institut National de la Recherche Agronomique, 180 Chemin de Tournefeuille, BP3, 31931 Toulouse Cedex 9, France.

Published: March 2003

The formation of 4-hydroxy-2-nonenal (HNE) conjugates with glutathione (GSH) by Michael addition and subsequent cleavage to yield the related mercapturic acid (MA) conjugates are a major detoxication process. To characterize the metabolic pathways involved in the formation of urinary HNE-MA conjugates in the rat, the metabolism of HNE-thioethers (HNE-GSH, HNE-MA, and HNE-Cys) by rat liver and kidney cytosolic fractions was investigated. The experimental results showed that HNE-GSH is a good substrate for cytosolic incubations whereas HNE-MA and HNE-Cys are poorly metabolized. About 80% of the urinary MA conjugates originate from the primary and major HNE metabolite, namely, the hemiacetalized HNE-GSH. The direct reduction of HNE-GSH by a cytosolic aldo-keto reductase (NADPH) leads to 1,4-dihydroxynonene-GSH (DHN-GSH) and subsequently to DHN-MA. The direct oxidation of HNE-GSH by aldehyde dehydrogenase (NAD)(+) leads to 4-hydroxynonenoic-lactone-GSH, the partial hydrolysis of which occurs at physiological pH and accounts for the corresponding 4-hydroxynonenoic-GSH. Both the spontaneous- and the glutathione S-transferases-catalyzed retro-Michael cleavages of HNE-GSH and HNA-lactone-GSH are the source of HNE and HNA-lactone, respectively. This latter compound, with both lipophilic and electrophilic properties, is available for microsomal omega-hydroxylation by cytochrome P450 4A enzymes and conjugation with thiol groups and therefore is the most likely candidate for the formation of omega-hydroxylated HNE-mercapturic acid conjugates excreted in rat urine.

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx025671kDOI Listing

Publication Analysis

Top Keywords

acid conjugates
8
hne-ma hne-cys
8
hne-gsh
6
conjugates
5
identification intermediate
4
intermediate pathways
4
pathways 4-hydroxynonenal
4
4-hydroxynonenal metabolism
4
rat
4
metabolism rat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!