Artemisinin derivatives are first-line antimalarial drugs in Thailand. No firm evidence of clinically relevant artemisinin resistance exists. When used as monotherapy, artesunate has been associated with a high treatment failure (recrudescence) rate, which could be due to low-level artemisinin resistance. To understand the causes of recrudescence, we retrospectively studied a cohort of 104 malaria patients treated with artesunate monotherapy, 32 of whom recrudesced. There was no difference in in vitro artesunate sensitivities between 6 nonrecrudescent isolates and 16 paired admission and recrudescent isolates. Paired admission and recrudescent isolates from 10 patients were genotyped; only 3 had pfmdr1 mutations. Patients with admission parasitemias >10,000 per microl had a 9-fold higher likelihood of recrudescence (adjusted odds ratio) compared with patients with lower parasitemias. This study suggests (1) recrudescence after treatment with artesunate is not the result of inherent parasite resistance, and (2) admission parasitemia may be useful in choosing therapeutic options.

Download full-text PDF

Source

Publication Analysis

Top Keywords

artemisinin resistance
8
isolates paired
8
paired admission
8
admission recrudescent
8
recrudescent isolates
8
recrudescence
5
patients
5
recrudescence artesunate-treated
4
artesunate-treated patients
4
patients falciparum
4

Similar Publications

Background: To understand the emergence and spread of drug-resistant parasites in malaria-endemic areas, accurate assessment and monitoring of antimalarial drug resistance markers is critical. Recent advances in next-generation sequencing (NGS) technologies have enabled the tracking of drug-resistant malaria parasites.

Methods: In this study, we used Targeted Amplicon Deep Sequencing (TADS) to characterise the genetic diversity of the Pfk13, Pfdhfr, Pfdhps, and Pfmdr1 genes among primary school-going children in 15 counties in Kenya (Bungoma, Busia, Homa Bay, Migori, Kakamega, Kilifi, Kirinyaga, Kisii, Kisumu, Kwale, Siaya, Tana River, Turkana, Vihiga and West Pokot).

View Article and Find Full Text PDF

Metabolic changes that allow artemisinin-resistant parasites to tolerate oxidative stress.

Front Parasitol

September 2024

Centro de Cálculo Científico de la Universidad de Los Andes (CeCalCULA), Universidad de Los Andes (ULA), Mérida, Venezuela.

Artemisinin-based treatments (ACTs) are the first therapy currently used to treat malaria produced by . However, in recent years, increasing evidence shows that some strains of are less susceptible to ACT in the Southeast Asian region. A data reanalysis of several omics approaches currently available about parasites of that have some degree of resistance to ACT was carried out.

View Article and Find Full Text PDF

The global rise of drug-resistant malaria parasites is becoming an increasing threat to public health, emphasizing the urgent need for the development of new therapeutic strategies. Artimisinin- based therapies, once the backbone of malaria treatment, are now at risk due to the resistance developed in parasites. The lack of a universally accessible malaria vaccine exacerbates this crisis, underscoring the need to explore new antimalarial drugs.

View Article and Find Full Text PDF

Background: In moderate-to-high malaria transmission regions, the World Health Organization recommends intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) alongside insecticide-treated bed nets to reduce the adverse consequences of pregnancy-associated malaria. Due to high-grade Plasmodium falciparum resistance to SP, novel treatment regimens need to be evaluated for IPTp, but these increase pill burden and treatment days. The present qualitative study assessed the acceptability of IPTp-SP plus dihydroartemisinin-piperaquine (DP) in Papua New Guinea, where IPTp-SP was implemented in 2009.

View Article and Find Full Text PDF

Background: has developed resistance to almost all the antimalarial drugs currently in use. This resistance has been and remains one of the greatest threats to the control and elimination of malaria. The use of molecular markers of resistance to monitor the emergence and spread of antimalarial drug-resistant parasite strains has proved highly effective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!