Hypertension is a leading contributor to cardiovascular diseases such as heart attack and stroke. Genetic and environmental factors contribute to the development of hypertension. Animal models have been developed to study the genetic contributions to blood pressure (BP) regulation and to identify chromosomal regions harboring candidate genes causative of differences in BP regulation (i.e., BP quantitative trait loci [QTL]). Advances in both mammalian genome projects and global gene expression analysis present opportunities to study functional genomics in these animal models. In this article, novel approaches for designing experiments and interpreting global gene expression data using the Dahl salt-sensitive hypertension rat model are presented. We describe two-step screening protocols that can be used to identify BP QTL candidate genes. Genetically determined expression differences are identified in the target organs of inbred strains of contrasting phenotype in the first screen. Expression patterns in a panel of congenic strains or expression differences stemming from gene x environment interactions are examined in the second screen. Chromosomal locations of these genes can then be examined to determine whether they map to BP QTL-containing regions. Another approach is to study the expression of genes identified from public databases to be located within BP QTL-containing congenic regions. Several candidate genes have been identified using these strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1615/critreveukaryotgeneexpr.v12.i4.40 | DOI Listing |
Adv Clin Exp Med
January 2025
Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, USA.
Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Due to the lack of symptoms until advanced stages, early diagnosis of ccRCC is challenging. Therefore, the identification of novel secreted biomarkers for the early detection of ccRCC is urgently needed.
View Article and Find Full Text PDFHeliyon
January 2025
ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab, 141 004, India.
Viral diseases severely impact maize yields, with occurrences of maize viruses reported worldwide. Deployment of genetic resistance in a plant breeding program is a sustainable solution to minimize yield loss to viral diseases. The meta-QTL (MQTL) has demonstrated to be a promising approach to pinpoint the most robust QTL(s)/candidate gene(s) in the form of an overlapping or common genomic region identified through leveraging on different research studies that independently report genomic regions significantly associated with the target traits.
View Article and Find Full Text PDFJ Dent Sci
December 2024
Blood Transfusion Haematology Hospital No. 2, Ho Chi Minh City, Viet Nam.
Background/purpose: Oral squamous cell carcinoma (OSCC) is notorious for its low survival rates, due to the advanced stage at which it is commonly diagnosed. To enhance early detection and improve prognostic assessments, our study harnesses the power of machine learning (ML) to dissect and interpret complex patterns within mRNA-sequencing (RNA-seq) data and clinical-histopathological features.
Materials And Methods: 206 retrospective Vietnamese OSCC formalin-fixed paraffin-embedded (FFPE) tumor samples, of which 101 were subjected to RNA-seq for classification based on gene expression.
Hortic Res
January 2025
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193.
Appropriate root system architecture (RSA) can improve alfalfa yield, yet its genetic basis remains largely unexplored. This study evaluated six RSA traits in 171 alfalfa genotypes grown under controlled greenhouse conditions. We also analyzed five yield-related traits in normal and drought stress environments and found a significant correlation (0.
View Article and Find Full Text PDFMater Today Bio
February 2025
Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China.
Diabetic keratopathy (DK), a significant complication of diabetes, often leads to corneal damage and vision impairment. Effective models are essential for studying DK pathogenesis and evaluating potential therapeutic interventions. This study developed a novel biomimetic full-thickness corneal model for the first time, incorporating corneal epithelial cells, stromal cells, endothelial cells, and nerves to simulate DK conditions .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!