To evaluate the effects of bioactive molecules in pulpal wound healing, we carried out experiments using the rat upper molars as an in vivo model. Cavities were prepared on the mesial aspect, and pulp perforation was accomplished by the application of pressure with the tip of a steel probe. After the pulp-capping procedure, the cavities were filled with a glass-ionomer cement. Comparison was made between and among: (1) sham-operated controls with dentin and predentin fragments implanted in the pulp during perforation after 8, 14, and 28 days; (2) carrier without bioactive substance; (3) calcium hydroxide; (4) Bone Sialoprotein (BSP); (5) different concentrations of Bone Morphogenetic Protein-7 (BMP-7), also termed Osteogenic Protein-1 (OP-1); and (6) N-Acetyl Cysteine (NAC), an anti-oxidant agent preventing glutathione depletion. Histologic and morphometric comparison, carried out among the first 4 groups on demineralized tissue sections, indicated that, at 28 days after implantation, BSP was the most efficient bioactive molecule, inducing homogeneous and well-mineralized reparative dentin. BMP-7 gave reparative dentin of the osteodentin type in the coronal part of the pulp, and generated the formation of a homogeneous mineralized structure in the root canal. These findings indicate that the crown and radicular parts of the pulp bear their own specificity. Both BSP and BMP-7 were superior to calcium hydroxide in their mineralization-inducing properties, and displayed larger areas of mineralization containing fewer pulp tissue inclusions. The overall mineralization process to these molecules appeared to proceed by mechanisms that involved the recruitment of cells which differentiate into osteoblast-like cells, producing a mineralizing extracellular matrix. We also provide preliminary evidence that NAC induces reparative dentin formation in the rat molar model. Pulp-capping with bioactive molecules provides new prospects for dental therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/08959374010150012401 | DOI Listing |
Org Lett
January 2025
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
A straightforward synthesis of -dihydronaphthodioxine has been efficiently accomplished through Cu(II)-NHC catalysis, involving the stereoselective ring opening of -epoxides with quinoid-carbene. Intramolecular S2-like substitution facilitates the inversion of stereochemistry during -epoxide ring opening. This reaction has been developed under simple conditions, demonstrating a broad substrate scope with a wide chemoselective profile.
View Article and Find Full Text PDFJ Dent Sci
January 2025
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Salivary gland diseases encompass a broad range of conditions, including autoimmune, inflammatory, obstructive, and neoplastic disorders, significantly impacting oral health and overall well-being. Recent research has highlighted the crucial role of exosomes, small extracellular vesicles, in these diseases. Exosomes mediate intercellular communication by transferring bioactive molecules such as proteins, microRNAs, and lipids, positioning them as potential diagnostic biomarkers and therapeutic agents.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan.
Background/purpose: -2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) is a bioactive component in the Chinese herb Polygonum multiflorum, recognized for its anti-inflammatory and lipid-lowering properties. Human dental pulp stem cells (hDPSCs) have excellent capabilities in tooth regeneration, wound healing, and neural repair. The exosomes (Exo) released by hDPSCs contain bioactive molecules that influence cell proliferation, differentiation, and immune responses.
View Article and Find Full Text PDFLife Metab
April 2024
Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
In addition to their pivotal roles in energy storage and expenditure, adipose tissues play a crucial part in the secretion of bioactive molecules, including peptides, lipids, metabolites, and extracellular vesicles, in response to physiological stimulation and metabolic stress. These secretory factors, through autocrine and paracrine mechanisms, regulate various processes within adipose tissues. These processes include adipogenesis, glucose and lipid metabolism, inflammation, and adaptive thermogenesis, all of which are essential for the maintenance of the balance and functionality of the adipose tissue micro-environment.
View Article and Find Full Text PDFCurr Rheumatol Rev
January 2025
Department of Pharmaceutical Chemistry, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur (MS), India.
Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease that requires early detection and treatment. Currently, we have three categories of slow-acting disease-modifying antirheumatic drugs (DMARDs): (1) conventional synthetic (csDMARD), (2) biologic (bDMARD), and (3) directed or targeted synthetic (tsDMARD).
Objective: This review explores innovative therapeutic modalities for RA, discussing their potential advantages and challenges.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!