To identify genes involved in regulated insulin secretion, we have established and characterized two sublines derived from the mouse pancreatic beta-cell line MIN6, designated B1 and C3. They have a similar insulin content, but differ in their secretory properties. B1 responded to glucose in a concentration- and cell confluence-dependent manner, whereas C3 did not. B1 cells were stimulated by phorbol 12-myristate 13-acetate, leucine, arginine, glibenclamide, isobutylmethylxanthine, and KCl, whereas C3 did not respond (leucine, arginine, and glibenclamide) or responded to a lesser extent (isobutylmethylxanthine, phorbol 12-myristate 13-acetate, and KCl). Although intracellular Ca(2+) rose in response to glucose in B1 but not C3 cells, KCl increased intracellular Ca(2+) in a similar manner in both sublines. GLUT-1, GLUT-2, Kir6.2, and SUR1 expression was not significantly different between B1 and C3 cells, whereas E-cadherin was more abundantly expressed in B1 cells. A more complete list of differentially expressed genes was established by suppression subtractive hybridization and high density (Affymetrix) oligonucleotide microarrays. Genes were clustered according to known or putative function. Those involved in metabolism, intracellular signaling, cytoarchitecture, and cell adhesion are of potential interest. These two sublines should be useful for identification of the genes and mechanisms involved in regulated insulin secretion of the pancreatic beta-cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2002-220916 | DOI Listing |
BMC Cancer
January 2025
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Background: Inadequate treatment responses, chemotherapy resistance, significant heterogeneity, and lengthy treatment durations create an urgent need for new pancreatic cancer therapies. This study aims to investigate the effectiveness of gemcitabine-loaded nanoparticles enclosed in an organo-metallic framework under ketogenic conditions in inhibiting the growth of MIA-PaCa-2 cells.
Methods: Gemcitabine was encapsulated in Metal-organic frameworks (MOFs) and its morphology and size distribution were examined using transmission electron microscopy (TEM) and Dynamic light scattering (DLS) with further characterization including FTIR analysis.
Mol Metab
January 2025
Section of Endocrinology and Investigative Medicine, Imperial College London, United Kingdom. Electronic address:
Objective: There is renewed interest in targeting the glucose-dependent insulinotropic polypeptide receptor (GIPR) for treatment of obesity and type 2 diabetes. G-protein coupled receptor desensitisation is suggested to reduce the long-term efficacy of glucagon-like-peptide 1 receptor (GLP-1R) agonists and may similarly affect the efficacy of GIPR agonists. We explored the extent of pancreatic GIPR functional desensitisation with sustained agonist exposure.
View Article and Find Full Text PDFDiabetes
January 2025
Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
Pancreatic cystic changes in adults are increasingly identified through advanced cross-sectional imaging. However, the impact of initial/intra-lobular epithelial remodeling on the local β-cell population remains unclear. In this study, we examined 10 human cadaveric donor pancreases (tail and body regions) via integration of stereomicroscopy, clinical H&E histology, and 3D immunohistochemistry, identifying 36 microcysts (size: 1.
View Article and Find Full Text PDFCancer Res Commun
January 2025
University of California, San Diego, La Jolla, CA, United States.
Cancer-associated fibroblasts (CAF) generate an extracellular matrix (ECM) which provides a repository for factors that promote pancreatic cancer progression. Here, we establish that CAF contribution to pancreatic tumor initiation, i.e.
View Article and Find Full Text PDFPancreatic cancer (PC) is one of the leading causes of cancer deaths, associated with a high risk of metastasis and mortality. The long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is highly expressed in multiple types of tumour tissues and may be associated with the growth of PC cells. In this study, we aimed to assess the role and possible mechanisms of MALAT1 in PC progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!