The interaction of C1q with endothelial cells elicits a multiplicity of biologic responses. Although these specific responses are thought to be mediated by the interaction of C1q with proteins of the endothelial cell surface, the molecular identity of the participant(s) has not been clearly defined. In this study, we examined the role of two C1q-binding proteins, cC1q-R/CR and gC1q-R/p33, on C1q-mediated adhesion and spreading of human dermal microvascular endothelial cells (HDMVECs). A specific and dose-dependent adhesion and spreading was observed when HDMVECs were cultured in microtiter plate wells coated with concentrations of C1q ranging from 0 to 50 microg/ml. The extent of adhesion and spreading was similar to the adhesion seen on collagen-coated wells. Furthermore, the effect of C1q was mimicked by either polyclonal anti-cC1q-R or mAb 60.11, but not with isotype- and species-matched control IgG. More importantly, however, a 100% inhibition of spreading but not adhesion to C1q-coated wells was observed when HDMVECs were cultured in the presence of 30 mM of the peptide GRRGDSP but not GRRGESP. Furthermore, while anti-beta1 integrin antibody blocked adhesion and spreading, antialpha5 integrin only blocked spreading. Since earlier studies have shown that zinc induces the exposure of hydrophobic sites in the C-terminus of gC1q-R including the putative high-molecular weight kininogen (HK)-binding site corresponding to residues 204-218, we also examined the effect of zinc on antibody binding to cell surface gC1q-R. Flow cytometric data show that the binding of mAb 74.5.2, which recognizes residues 204-218, is greatly enhanced when endothelial cells were incubated in the presence of 50 microM zinc. In summary, our data show that: (a) C1q-mediated endothelial cell adhesion and spreading requires the cooperation of both C1q receptors and 1 integrins, and possibly other membrane-spanning molecules, and (b) zinc can induce the exposure of hydrophobic sites in the C-terminal domain of gC1q-R allowing a more efficient binding of mAb 74.5.2 and HK.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1567-5769(02)00270-9DOI Listing

Publication Analysis

Top Keywords

adhesion spreading
24
endothelial cell
12
endothelial cells
12
adhesion
8
cell adhesion
8
spreading
8
c1q receptors
8
receptors integrins
8
interaction c1q
8
cell surface
8

Similar Publications

The Role of Sulfatides in Liver Health and Disease.

Front Biosci (Landmark Ed)

January 2025

Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.

Sulfatides or 3-O-sulfogalactosylceramide are negatively charged sulfated glycosphingolipids abundant in the brain and kidneys and play crucial roles in nerve impulse conduction and urinary pH regulation. Sulfatides are present in the liver, specifically in the biliary tract. Sulfatides are self-lipid antigens presented by cholangiocytes to activate cluster of differentiation 1d (CD1d)-restricted type II natural killer T (NKT) cells.

View Article and Find Full Text PDF

Background: Interfacial heterogeneity is widely explored to reveal molecular mechanisms of force-mediated pathways due to biased tension. However, the influence of cell density,, curvature, and interfacial heterogeneity on underlying pathways of mechanotransduction is obscure.

Methods: Polydimethylsiloxane (PDMS)-based stencils were micropatterned to prepare the micropores for cell culture.

View Article and Find Full Text PDF

Polyetheretherketone (PEEK) is widely used in orthopedic and dental implants due to its excellent mechanical properties, chemical stability, and biocompatibility. However, its inherently bioinert nature makes it present weak osteogenic activity, which greatly restricts its clinical adoption. Herein, strontium (Sr) is incorporated onto the surface of PEEK using mussel-inspired polydopamine coating to improve its osteogenic activity.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the biofilm formation abilities of clinical strains, assess their antibiotic susceptibility patterns, and identify the prevalence of adhesion-associated genes.

Methodology: In this study, a total of 60  strains were collected from urine, pus, wounds, blood, body fluid, and sputum in health centers affiliated with Abadan University of Medical Sciences, Iran. Strains were identified via microbiological methods and polymerase chain reaction (PCR) to target the gene.

View Article and Find Full Text PDF

Many cellular functions depend on the physical properties of the cell's environment. Many bacteria have different types of surface appendages to enable adhesion and motion on various surfaces. is a social soil bacterium with two distinctly regulated modes of surface motility, termed the social motility mode, driven by type IV pili, and the adventurous motility mode, based on focal adhesion complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!