AI Article Synopsis

Article Abstract

The experimental literature has shown that neurons within sub-fields of the hippocampus possess differential sensitivities to cell loss after different types of insult to the brain. In humans, after blunt head injury, differential neuronal responses between sub-fields of the hippocampus up to 72 hours after injury have been documented. But, in only a small part of the literature have data for alterations in real numbers of neurons been provided. In this study the hypothesis was tested that, after severe blunt head injury in humans, the total number of neurons within a defined volume of brain tissue differed between different sub-fields of the hippocampus and between groups of patients with differing post-traumatic survivals. Stereological methods were used to measure total cross-sectional area of sub-fields of the hippocampus taken at the level of the lateral geniculate nucleus and count numbers of neurons within each of the CA1, CA2, CA3, and CA4 sub-fields of the hippocampus in patients. The patients used in this study were categorized as follows: Group 1 (early) had survived for 1 week or less; Group 2 (late) survived 6 months or longer after fatal severe head injury; and Group 3 (controls) consisted of age-matched patients that had no history of head injury or disease prior to death. There was a significant loss in cross-sectional area in sub-fields CA3 and CA4 at 1 week or less after injury and in sub-field CA1 at 6 months and greater survival. There was no change in CA2. There was loss of neurons from within a predefined volume of brain tissue in sub-fields CA1, CA3, and CA4 one week or less after injury. But there was no loss in CA2. There was continued loss of neurons from sub-fields CA1 and CA4 between 1 week and 6 months and greater survival, but there was no loss of neurons in sub-fields CA2 and CA3 within the same period. These novel data show that after human severe head injury there is first an acute loss (1 week or less survival) of pyramidal neurons in all hippocampal sub-fields except CA2. Second, there is an ongoing loss of neurons in sub-field CA1 and, most notably, in sub-field CA4, in patients surviving for more than 6 months. However, in neither group of patients is there loss of neurons from sub-field CA2.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnen/62.3.272DOI Listing

Publication Analysis

Top Keywords

head injury
24
sub-fields hippocampus
20
loss neurons
20
blunt head
12
neurons sub-fields
12
ca3 ca4
12
ca4 week
12
neurons
10
sub-fields
10
injury
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!