The global extended Kalman filtering (EKF) algorithm for recurrent neural networks (RNNs) is plagued by the drawback of high computational cost and storage requirement. In this paper, we present a local EKF training-pruning approach that can solve this problem. In particular, the by-products, obtained along with the local EKF training, can be utilized to measure the importance of the network weights. Comparing with the original global approach, the proposed local approach results in much lower computational cost and storage requirement. Hence, it is more practical in solving real world problems. Simulation showed that our approach is an effective joint-training-pruning method for RNNs under online operation.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065703001376DOI Listing

Publication Analysis

Top Keywords

training-pruning approach
8
recurrent neural
8
neural networks
8
computational cost
8
cost storage
8
storage requirement
8
local ekf
8
approach
5
local
4
local training-pruning
4

Similar Publications

Deeper and wider convolutional neural networks (CNNs) achieve superior performance but bring expensive computation cost. Accelerating such overparameterized neural network has received increased attention. A typical pruning algorithm is a three-stage pipeline, i.

View Article and Find Full Text PDF

The global extended Kalman filtering (EKF) algorithm for recurrent neural networks (RNNs) is plagued by the drawback of high computational cost and storage requirement. In this paper, we present a local EKF training-pruning approach that can solve this problem. In particular, the by-products, obtained along with the local EKF training, can be utilized to measure the importance of the network weights.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!