Mitogen-activated protein kinases are crucial components in the life of eukaryotic cells. The current dogma for MAPK activation is that dual phosphorylation of neighboring Thr and Tyr residues at the phosphorylation lip is an absolute requirement for their catalytic and biological activity. In this study we addressed the role of Tyr and Thr phosphorylation in the yeast MAPK Hog1/p38. Taking advantage of the recently isolated hyperactive mutants, whose intrinsic basal activity is independent of upstream regulation, we demonstrate that Tyr-176 is not required for basal catalytic and biological activity but is essential for the salt-induced amplification of Hog1 catalysis. We show that intact Thr-174 is absolutely essential for biology and catalysis of the mutants but is mainly required for structural reasons and not as a phosphoacceptor. The roles of Thr-174 and Tyr-176 in wild type Hog1 molecules were also tested. Unexpectedly we found that Hog1(Y176F) is biologically active, capable of induction of Hog1 target genes and of rescuing hog1Delta cells from osmotic stress. Hog1(Y176F) was not able, however, to mediate growth arrest induced by constitutively active MAPK kinase/Pbs2. We propose that Thr-174 is essential for stabilizing the basal active conformation, whereas Tyr-176 is not. Tyr-176 serves as a regulatory element required for stimuli-induced amplification of kinase activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.C300006200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!