The low density lipoprotein receptor-related protein (LRP) is a large endocytic receptor that recognizes more than 30 different ligands and plays important roles in protease and lipoprotein catabolism. Ligand binding to newly synthesized LRP is modulated by the receptor-associated protein (RAP), an endoplasmic reticulum-resident protein that functions as a molecular chaperone and prevents ligands from associating with LRP via an allosteric-type mechanism. RAP is a multidomain protein that contains two independent LRP binding sites, one located at the amino-terminal portion of the molecule and the other at the carboxyl-terminal portion of the molecule. The objective of the present investigation was to gain insight into how these two regions of RAP interact with LRP and function to modulate its ligand binding properties. These objectives were accomplished by random mutagenesis of RAP, which identified two critical lysine residues, Lys-256 and Lys-270, within the carboxyl-terminal domain that are necessary for binding of this region of RAP to LRP and to heparin. RAP molecules in which either of these two lysine residues was mutated still bound LRP but with reduced affinity. Furthermore, the mutant RAPs were significantly impaired in their ability to inhibit alpha(2)M* binding to LRP via allosteric mechanisms. In contrast, the mutant RAP molecules were still effective at inhibiting uPA.PAI-1 binding to LRP. These results confirm that both LRP binding sites within RAP cooperate to inhibit ligand binding via an allosteric mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M212592200 | DOI Listing |
J Phys Chem B
January 2025
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
Implicit solvation models permit the approximate description of solute-solvent interactions, where water is the most often considered solvent due to its relevance in biological systems. The use of other solvents is less common but is relevant for applications such as in nuclear magnetic resonance (NMR) or chromatography. As an example, chloroform is commonly used in anisotropic NMR to measure residual dipolar couplings (RDCs) of chiral analytes weakly aligned by an alignment medium.
View Article and Find Full Text PDFInorg Chem
January 2025
Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria.
Platinum(II) complexes prevail as first-line treatment for many cancers but are associated with serious side effects and resistance development. Picoplatin emerged as a promising alternative to circumvent GSH-induced tumor resistance by introducing a bulky 2-picoline ligand. Although clinical studies were encouraging, picoplatin did not receive approval.
View Article and Find Full Text PDFEndocr Relat Cancer
January 2025
A Nikitski, Department of Pathology, University of Pittsburgh, Pittsburgh, 15261, United States.
Approximately 10-20% of thyroid cancers are driven by gene fusions, which activate oncogenic signaling through aberrant overexpression, ligand-independent dimerization, or loss of inhibitory motifs. We identified 13 thyroid tumors with thyroglobulin (TG) gene fusions and aimed to assess their histopathology and the fusions' oncogenic and tumorigenic properties. Of 11 cases with surgical pathology, 82% were carcinomas and 18% noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP).
View Article and Find Full Text PDFJ Pestic Sci
November 2024
Syngenta, Bioscience, Jealott's Hill Research Centre.
Flometoquin (FLO) is a novel quinoline-type insecticide that elicits a quick knock-down effect against target pests; however, its mode of action (MoA) remains unknown. In this study, we investigated its MoA systematically, using varying biochemical techniques. Since FLO-treated insects exhibited symptoms similar to those induced by respiratory inhibitors, we examined the effect of FLO on respiratory enzyme complexes using mitochondria isolated from different insects (housefly, diamondback moth, and western flower thrips).
View Article and Find Full Text PDFChem Sci
January 2025
University of Missouri - Columbia, Department of Chemistry USA
Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenges emerged as real-life stress tests for computational hit-finding strategies. In CACHE Challenge #1, 23 participants contributed their original workflows to identify small-molecule ligands for the WD40 repeat (WDR) of LRRK2, a promising Parkinson's target. We applied the FRASE-based hit-finding robot (FRASE-bot), a platform for interaction-based screening allowing a drastic reduction of the explorable chemical space and a concurrent detection of putative ligand-binding sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!