We present a new approach to the effective development of menu construction systems that allow to automatically construct a menu that is strongly tailored to the individual requirements and food preferences of a client. In hospitals and other health care institutions dietitians develop diets for clients which need to change their eating habits. Many clients have special needs in regards to their medical conditions, cultural backgrounds, or special levels of nutrient requirements for better recovery from diseases or surgery, etc. Existing computer support for this task is insufficient-many diets are not specifically tailored for the client's needs or require substantial time of a dietitian to be manually developed. Our approach is based on case-based reasoning, an artificial intelligence technique that finds increasing entry into industrial practice. Our approach goes beyond the traditional case-based reasoning (CBR) approach by allowing an incremental improvement of the system's competency during routine use of the system. The improvement of the system takes place through a direct expert user-system interaction while the expert is accomplishing their tasks of constructing a diet for a given client. Whenever the system performs unsatisfactorily, the expert will need to modify the system-produced diet 'manually', i.e. by entering the desired modifications into the system. Our implemented system, menu construction using an incremental knowledge acquisition system (MIKAS), asks the expert for simple explanations for each of the manual actions he/she takes and incorporates the explanations automatically into its knowledge base (KB) so that the system will perform these manually conducted actions automatically at the next occasion. We present MIKAS and discuss the results of our case study. While still being a prototype, the senior clinical dietitian involved in our evaluation studies judges the approach to have considerable potential to improve the daily routine of hospital dietitians as well as to improve the average quality of the dietary advice given to patients within the limited available time for dietary consultations. Our approach opens up a new avenue towards building highly specialised CBR systems in a more cost-effective way. Hence, our approach promises to allow a significantly more widespread development and practical deployment of CBR systems in a large variety of application domains including many medical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0933-3657(02)00113-6 | DOI Listing |
J Hematol Oncol
January 2025
Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.
View Article and Find Full Text PDFDiagn Progn Res
January 2025
Department of Applied Health Sciences, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, UK.
Background: Pressure injuries (PIs) place a substantial burden on healthcare systems worldwide. Risk stratification of those who are at risk of developing PIs allows preventive interventions to be focused on patients who are at the highest risk. The considerable number of risk assessment scales and prediction models available underscores the need for a thorough evaluation of their development, validation, and clinical utility.
View Article and Find Full Text PDFTrop Med Health
January 2025
Department of Health Policy, National Center for Child Health and Development, Tokyo, Japan.
Background: The impact of public health measures against the coronavirus disease 2019 on the rate of childhood immunization has not yet been fully defined. Particularly, measures which directly affect health-seeking behaviors (e.g.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!