The effect of random surface roughness on hydrodynamics of viscous incompressible liquid is discussed. When the hydrodynamic decay length (the viscous wave penetration depth) is larger than the correlation radius (size) of random surface inhomogeneities, it is possible to replace a random rough surface by effective stick-slip boundary conditions on a flat surface with two constants: the stick-slip length and the renormalization of viscosity near the boundary. The stick-slip length and the renormalization coefficient are expressed explicitly via the correlation function of random surface inhomogeneities. The stick-slip length is always negative and the effective change of viscosity near the surface is positive signifying the effective average hampering of the hydrodynamic flows by the rough surface (stick rather than slip motion). A simple hydrodynamic model illustrates general hydrodynamic results. The effective boundary parameters are analyzed numerically for Gaussian, power-law and exponentially decaying correlators with various indices. The maximum on the frequency dependence of the dissipation allows one to extract the correlation radius (characteristic size) of the surface inhomogeneities directly from, for example, experiments with torsional quartz oscillators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.67.026302 | DOI Listing |
J Ophthalmol
January 2025
Department of Ophthalmology, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo 0424, Norway.
Dry eye disease (DED) is a multifactorial disorder affecting millions worldwide. Inflammation plays a central role in DED. The aim of this review is to critically evaluate the literature concerning the efficacy and safety of lifitegrast, a small molecule immunomodulator that blocks the action of lymphocyte function-associated antigen-1.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou Key Laboratory of Cardiovascular Nursing, Zhengzhou, Henan, China.
Introduction: Atrial fibrillation (AF) significantly detracts from health-related quality of life (HRQoL). Despite the promotion of exercise interventions for managing AF, the effectiveness of different exercise modalities remains to be clearly defined. This systematic review and network meta-analysis aims to evaluate the comparative effectiveness of various modes of exercise interventions on HRQoL in AF patients.
View Article and Find Full Text PDFFood Res Int
February 2025
College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China. Electronic address:
Effects of enzymolysis by seven proteases (Alcalase, Bromelain, Flavourzyme, Papain, Pepsin, Protamex, and Trypsin) with distinct cleavage specificities on the emulsification performance of hempseed protein (HPI) and its correlation with the structural and interfacial characteristics were explored in this study. Upon enzymolysis, a remarkable decrease in α-helix and β-turn was observed in resultant hydrolysates (HPH), accompanied by a rise in β-sheet and random coil, notably by Alcalase, Bromelain, Papain, and Trypsin. Overall, proteolysis led to noticeable reductions in surface hydrophobicity and total sulfhydryls as well as a redshift in intrinsic fluorescence, with Papain showing the most pronounced effects, possibly due to its higher hydrolysis degree (4.
View Article and Find Full Text PDFEnviron Health Perspect
January 2025
Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, UK.
Background: Environmental change in coastal areas can drive marine bacteria and resulting infections, such as those caused by , with both foodborne and nonfoodborne exposure routes and high mortality. Although ecological drivers of in the environment have been well-characterized, fewer models have been able to apply this to human infection risk due to limited surveillance.
Objectives: The Cholera and Other Illness Surveillance (COVIS) system database has reported infections in the United States since 1988, offering a unique opportunity to both explore the forecasting capabilities machine learning could provide and to characterize complex environmental drivers of infections.
ACS Biomater Sci Eng
January 2025
Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
The structure of many native tissues consists of aligned collagen (Col) fibrils, some of which are further composited with dispersed hydroxyapatite (HAp) nanocrystals. Accurately mimicking this inherent structure is a promising approach to enhance scaffold biocompatibility in tissue engineering. In this study, biomimetic sheets composed of highly aligned Col fibrils were fabricated using a plastic compression and tension method, followed by the deposition of HAp nanocrystals on the surface via an alternate soaking method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!