We employ mean-field lattice density functional theory to investigate the phase behavior of a binary (A-B) mixture confined to nanoscopic slit pores with chemically homogeneous walls. We consider only nearest-neighbor interactions in symmetric mixtures, where epsilon(AA)=epsilon(BB) not equal epsilon(AB) and epsilon is a measure of attraction between molecules of like (subscripts AA and BB) and unlike species (subscript AB), respectively. In addition, molecules are exposed to short-range attraction by the substrates separated by z lattice planes where epsilon(W) is the relevant coupling parameter. Moreover, the chemical potentials of both components are the same, that is, mu(A)=mu(B)=mu. In thermodynamic equilibrium (for fixed temperature T and chemical potential mu) the grand-potential density omega[rho,m] (rho identical with [rho(1),...,rho(z)], m identical with [m(1),...,m(z)]) assumes a global minimum which we find by minimizing omega numerically with respect to the order parameters rho(l) identical with rho(A)(l)+rho(B)(l) (total local density) and m(l) identical with (rho(A)(l)-rho(B)(l))/rho(l) (local "miscibility") at lattice plane l parallel to the pore walls. By varying epsilon(AB) three generic types of bulk phase diagrams are observed. On account of confinement (i.e., by varying epsilon(W) as well as z) one may switch between these different types of phase diagrams. This may have profound practical repercussions for experimental nanophase separation since depending on pore width and chemical nature of its walls a bulk gas mixture may undergo capillary condensation and form either a stable mixed or demixed liquid phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.67.026122 | DOI Listing |
Circ Res
January 2025
Burke Neurological Institute, White Plains, NY (H.J., I.P., K.W.P., J.M., A.M., S.C.).
Background: Remote ischemic conditioning (RIC) has been implicated in cross-organ protection in cerebrovascular disease, including stroke. However, the lack of a consensus protocol and controversy over the clinical therapeutic outcomes of RIC suggest an inadequate mechanistic understanding of RIC. The current study identifies RIC-induced molecular and cellular events in the blood, which enhance long-term functional recovery in experimental cerebral ischemia.
View Article and Find Full Text PDFNanoscale Adv
January 2025
School of Chemical Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan 38541 Republic of Korea
Two-dimensional (2D) hybrid materials, particularly those based on boron nitride (BN) and graphene oxide (GO), have attracted significant attention for energy applications owing to their distinct structural and electronic properties. BN/GO composites uniquely combine the mechanical strength, thermal stability and electrical insulation of BN with the high conductivity and flexibility of GO, creating advanced materials ideal for the fabrication of batteries, supercapacitors and fuel cells. These hybrids offer synergistic effects, enhanced charge transport, increased surface area, and improved chemical stability, making them promising candidates for high-performance energy systems.
View Article and Find Full Text PDFChem Sci
January 2025
Center for Research in Biological Chemistry and Molecular Materials (CIQUS), Department of Chemical Engineering, Universidade de Santiago de Compostela Rúa de Jenaro de la Fuente, s/n 15705 Santiago de Compostela Spain
For decades, extensive surfactant libraries have been developed to meet the requirements of downstream applications. However, achieving functional diversity has traditionally demanded a vast array of chemical motifs and synthetic pathways. Herein, a new approach for surfactant design based on structural isomerism is utilised to access a wide spectrum of functionalities.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Otorhinolaryngology, Hannover Medical School, Hanover, Germany.
During cochlear implant (CI) surgery, it is desirable to perform intraoperative measurements such as Electrocochleography (ECochG) to monitor the inner ear function and thereby to support the preservation of residual hearing. However, a significant challenge arises as the recording location of intracochlear ECochG via the CI electrode changes during electrode insertion. This study aimed to investigate the relationships between intracochlear ECochG recordings, the position of the recording contact within the cochlea relative to its anatomy, and the implications for frequency and residual hearing preservation.
View Article and Find Full Text PDFExp Ther Med
March 2025
OrthoLab, The Rudbeck Laboratory, Department of Surgical Sciences/Orthopedics, Uppsala University, 75185 Uppsala, Sweden.
Silver (Ag) possesses potent antimicrobial properties and is used as a coating for medical devices. The impact of silver ions released from orthopedic implants on the differentiation and osteoid formation of different osteogenic cells has yet to be systematically studied. In the present study, human mesenchymal stem cells (hMSCs) and primary human osteoblasts (hOBs) were exposed to different static Ag concentrations (0, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!