Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An original mathematical model describing particle diffusion in human nasal passages is presented. A unique feature of the model is that it combines effects of both turbulent and laminar flows. To account for turbulence, concentration equations written in cylindrical coordinates are first simplified by a scaling technique and then solved analytically based on momentum/mass transfer analogy. To describe laminar motion, the work of Martonen et al. (1995a) is modified for application to nasal passages. The predictions of the new model agree well with particle deposition data from experiments using human replica nasal casts over a wide range of flow rates (4-30 L/min) and particle sizes (0.001-0.1 micro m). The results of our study suggest that a complex fluid dynamics situation involving a natural transition from laminar to turbulent motion may exist within human nasal passages during inspiration. The model may be used to predict deposition efficiencies of inhaled particles for inhalation toxicology (e.g., the risk assessment of air pollutants) and aerosol therapy (e.g., the treatment of lung diseases) applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08958370304458 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!