There is increasing evidence that muscle-derived precursor cells can, under appropriate conditions, give rise to other than myogenic cell types. Transplantation into the embryonic ventricular zone provides a unique opportunity to study the migration and differentiation of non-neural somatic progenitor cells in response to instructive cues within the developing neuroepithelium. Here, we demonstrate that myogenic cell lines grafted into the ventricles of rat embryos showed widespread migration into several host brain compartments. In contrast to incorporation patterns observed after transplantation of neural cells, grafted myoblasts incorporated virtually exclusively along endogenous blood vessels. Preferential incorporation sites included cortex, olfactory bulb, hippocampus, striatum, thalamus, hypothalamus, and tectum. While the engrafted myoblasts showed no evidence of neural differentiation, a fraction exhibited pronounced coexpression of endothelial marker antigens. These findings support the concept of a close developmental relationship between the myogenic and the endothelial lineages. Used as a delivery system, transfected myoblasts may be exploited for widespread gene transfer to the perivascular compartment of the perinatal central nervous system.

Download full-text PDF

Source
http://dx.doi.org/10.1634/stemcells.21-2-181DOI Listing

Publication Analysis

Top Keywords

migration differentiation
8
myogenic cell
8
myogenic
4
differentiation myogenic
4
myogenic precursors
4
precursors transplantation
4
transplantation developing
4
developing rat
4
rat brain
4
brain increasing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!