We used bulked segregant analysis (BSA) to identify microsatellite markers associated with water-stress tolerance in wheat. Two DNA pools (tolerant and sensitive) were established from the selected F2 individuals of crosses between water-stress-tolerant and -sensitive wheat parental genotypes on the basis of the paraquat (PQ) tolerance, leaf size, and relative water content. All three traits were previously shown to be associated with water-stress tolerance on segregating F2 progeny of the wheat crosses used in this study. Microsatellite analysis was then performed on the established DNA pools, using 35 primer pairs that included all of the chromosome group 5 (5A, 5B, 5D) markers, to detect microsatellite fragments that were present, absent, or both in the DNA pools and their parental lines. We identified one microsatellite fragment that was present in tolerant parent wheat and the tolerant bulk but absent in the sensitive parent wheat and sensitive bulk. We then followed the segregation of this marker in the tolerant F2 individuals. Use of this marker may significantly enhance the success of selection for PQ- and water-stress-tolerant genotypes in wheat breeding programs.

Download full-text PDF

Source
http://dx.doi.org/10.1385/MB:23:2:97DOI Listing

Publication Analysis

Top Keywords

associated water-stress
12
water-stress tolerance
12
dna pools
12
microsatellite markers
8
markers associated
8
tolerance wheat
8
bulked segregant
8
segregant analysis
8
parent wheat
8
wheat
7

Similar Publications

Background: Non-communicable diseases (NCDs) are governed by a cluster of unhealthy behaviours and their determinants, like tobacco and alcohol, unhealthy diet, lack of physical activity, overweight and obesity, pollution (air, water, and soil), and stress. Regulation of these unhealthy behaviours plays a crucial role in blood pressure control among individuals on hypertensive treatment, especially those suffering from uncontrolled hypertension. Hence, the present study aims at identifying the unhealthy behaviours associated with uncontrolled hypertension.

View Article and Find Full Text PDF

Background Heart failure (HF) is commonly managed by addressing water and sodium (Na) balance, with arterial circulation playing a major role in influencing renal Na and water excretion. Recently, chloride (Cl) has been recognized as an important factor in HF, associated with volume regulation and its modulation of renin-angiotensin-aldosterone system (RAAS) activity through macula densa signaling, which impacts Na retention and neurohormonal activation. Acetazolamide, a carbonic anhydrase inhibitor, can enhance decongestion in HF by increasing urinary Na and Cl excretion when added to loop diuretics, a mechanism supported by prior studies demonstrating improved urine output and decongestion.

View Article and Find Full Text PDF

This study aimed to determine the protective role of boric acid in a pregnant rat model of high fructose corn syrup consumption. Consumption of high fructose corn syrup has been associated with adverse health outcomes in humans and animals. Twenty-eight healthy female Wistar albino rats (250-300 g weight and 16-24 weeks old) were randomly distributed into four equal groups (n = 7): Control, Boric acid (BA), High Fructose Corn Syrup (HFCS), HFCS + BA.

View Article and Find Full Text PDF

Construing the resilience to osmotic stress using endophytic fungus in maize (Zea mays L.).

Plant Mol Biol

January 2025

Department of Plant Pathology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra (GKVK), Bengaluru, India.

In a wake of shifting climatic scenarios, plants are frequently forced to undergo a spectrum of abiotic and biotic stresses at various stages of growth, many of which have a detrimental effect on production and survival. Naturally, microbial consortia partner up to boost plant growth and constitute a diversified ecosystem against abiotic stresses. Despite this, little is known pertaining to the interplay between endophytic microbes which release phytohormones and stimulate plant development in stressed environments.

View Article and Find Full Text PDF

Photosynthetic eukaryotic microalgae are key primary producers in the Antarctic sea ice environment. Anticipated changes in sea ice thickness and snow load due to climate change may cause substantial shifts in available light to these ice-associated organisms. This study used a laboratory-based experiment to investigate how light levels, simulating different sea ice and snow thicknesses, affect fatty acid (FA) composition in two ice associated microalgae species, the pennate diatom Nitzschia cf.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!