Rationale: Clozapine has been shown to increase extracellular dopamine (DA) and noradrenaline (NA) in the medial prefrontal cortex (mPFC). A recent study of ours suggested that extracellular DA in the PFC originates not only from dopaminergic but also from noradrenergic terminals, its release being controlled by alpha(2)-adrenoceptors.
Objectives: Since clozapine binds to alpha(2)-adrenoceptors, the possibility that it might co-release DA and NA was studied.
Methods: By means of microdialysis coupled to HPLC with electrochemical detection, the effect of clozapine on extracellular DA and NA in the mPFC, densely innervated by DA and NA, was compared to that in the occipital cortex, equally innervated by NA but receiving few DA projections.
Results: Extracellular NA was found to be the same in the two cortices, consistent with homogeneous NA innervation. On the other hand, extracellular DA in the occipital cortex was only 29% lower than in the mPFC, in spite of the scarce dopaminergic innervation in the occipital cortex. Clozapine (10 mg/kg IP) increased extracellular DA and NA not only in the mPFC (by about 320% and 290%, respectively) but also in the occipital cortex (by 560% and 230%, respectively). Administration of the alpha(2)-agonist clonidine (0.15 mg/kg) reversed the effect of clozapine in both cortices, while the D(2)-agonist quinpirole (0.1 mg/kg IP) was ineffective.
Conclusions: The results suggest that clozapine, by inhibiting alpha(2)-adrenoceptors, co-releases DA and NA from noradrenergic terminals in the occipital cortex and that the same mechanism might be responsible for the concomitant increase of the two monoamines in the mPFC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00213-002-1381-y | DOI Listing |
Cell Rep Methods
January 2025
Department of Neurosurgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China. Electronic address:
To restore vision in the blind, advances in visual cortical prosthetics (VCPs) have offered high-channel-count electrical interfaces. Here, we design a 100-fiber optical bundle interface apposed to known feature-specific (color, shape, motion, and depth) functional columns that populate the visual cortex in humans, primates, and cats. Based on a non-viral optical stimulation method (INS, infrared neural stimulation; 1,875 nm), it can deliver dynamic patterns of stimulation, is non-penetrating and non-damaging to tissue, and is movable and removable.
View Article and Find Full Text PDFSurg Radiol Anat
January 2025
Anatomy Department, University of Western Brittany (UBO), Brest, France.
Purpose: The aim was to establish a functional MRI protocol for analyzing human stereoscopic vision in clinical practice. The feasibility was established in a cohort of 9 healthy subjects to determine the functional cortical areas responsible for virtually relief vision.
Methods: Nine healthy right-handed subjects underwent orthoptic examination and functional MRI.
Sci Rep
January 2025
Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.
Horizontal connections in anterior inferior temporal cortex (ITC) are thought to play an important role in object recognition by integrating information across spatially separated functional columns, but their functional organization remains unclear. Using a combination of optical imaging, electrophysiological recording, and anatomical tracing, we investigated the relationship between stimulus-response maps and patterns of horizontal axon terminals in the macaque ITC. In contrast to the "like-to-like" connectivity observed in the early visual cortex, we found that horizontal axons in ITC do not preferentially connect sites with similar object selectivity.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA.
Humans adjust their movement to changing environments effortlessly via multisensory integration of the effector's state, motor commands, and sensory feedback. It is postulated that frontoparietal (FP) networks are involved in the control of prehension, with dorsomedial (DM) and dorsolateral (DL) regions processing the reach and the grasp, respectively. This study tested (5F, 5M participants) the differential involvement of FP nodes (ventral premotor cortex - PMv, dorsal premotor cortex - PMd, anterior intraparietal sulcus - aIPS, and anterior superior parietal-occipital cortex - aSPOC) in online adjustments of reach-to-grasp coordination to mechanical perturbations that disrupted arm transport.
View Article and Find Full Text PDFEur J Neurol
February 2025
Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.
Objective: Disorders of arousal (DoA) are characterized by an intermediate state between wakefulness and deep sleep, leading to incomplete awakenings from NREM sleep. Multimodal studies have shown subtle neurophysiologic alterations even during wakefulness in DoA. The aim of this study was to explore the brain functional connectivity in DoA and the metabolic profile of the anterior and posterior cingulate cortex, given its pivotal role in cognitive and emotional processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!