Background: Inducible, high-output nitric oxide (NO) production has been identified as a central mediator of cell injury in immune-mediated renal disease. In acute anti-thy-1 glomerulonephritis prefeeding with the NO precursor L-arginine increases mesangial cell injury and the subsequent fibrosis. The present study tested the hypothesis that L-arginine supplementation may also be detrimental in chronic, NO-mediated murine lupus nephritis.

Methods: Groups (N = 18) of female MRL/lpr mice with lupus nephritis were fed the following diets: (1) normal protein (22% casein); (2) normal protein and 1.0% L-arginine in the drinking water; (3) low protein (6% casein); (4) low protein + 0.4%l-arginine; and (5) low protein + 1.0% L-arginine. After 40 days mouse survival, albuminuria, matrix accumulation, inflammatory cell infiltration, immunoglobulin G (IgG) deposition, expression of transforming growth factor-beta 1 (TGF-beta 1), fibronectin and plasminogen activator inhibitor-1 (PAI-1) mRNA and protein, anti-DNA antibody titer, inducible nitric oxide synthase (iNOS) mRNA expression, blood amino acid levels, blood urea nitrogen (BUN) concentrations and blood and urinary NOx (nitrite + nitrate) levels were assessed.

Results: L-Arginine supplementation increased mortality significantly (P < 0.02). The death rate increased from 0% in the lowest to 50% in the highest L-arginine intake group (normal protein + 1.0% L-arginine). L-Arginine administration increased albuminuria, renal matrix accumulation, TGF-beta 1, fibronectin, PAI-1, blood L-arginine, L-citrulline, BUN and blood and urine NOx levels, while protein restriction reduced these parameters. Renal cell infiltration and iNOS mRNA expression were decreased in the low protein group only. Anti-ds DNA-IgG and renal IgG deposition were comparable in all groups

Conclusions: Increasing L-arginine intake increases the severity of renal fibrosis and the likelihood of death in MRL/lpr mice. The results appear to be at least in part mediated through enhanced cytotoxic NO generation via iNOS. The data suggest that L-arginine restriction should be considered in human immune-mediated renal diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1523-1755.2003.00881.xDOI Listing

Publication Analysis

Top Keywords

low protein
16
l-arginine
12
l-arginine supplementation
12
normal protein
12
protein 10%
12
10% l-arginine
12
protein
9
renal fibrosis
8
lupus nephritis
8
nitric oxide
8

Similar Publications

Background: /aims. Pseudoxanthoma Elasticum (PXE, OMIM 264800) is an autosomal, recessive, metabolic disorder characterized by progressive ectopic calcification in the skin, the vasculature and Bruch's membrane. Variants in the ABCC6 gene are associated with low plasma pyrophosphate (PPi) concentration.

View Article and Find Full Text PDF

Background: Lysinuric protein intolerance is a rare autosomal disorder caused by mutations in the Slc7a7 gene that lead to impaired transport of neutral and basic amino acids. The gold standard treatment for lysinuric protein intolerance involves a low-protein diet and citrulline supplementation. While this approach partially improves cationic amino acid plasma levels and alleviates some symptoms, long-term treatment is suggested to be detrimental and may lead to life-threatening complications characterized by a wide range of hematological and immunological abnormalities.

View Article and Find Full Text PDF

Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.

View Article and Find Full Text PDF

Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria.

Nat Chem Biol

January 2025

Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.

Diverse bacteria and archaea use atmospheric CO as an energy source for long-term survival. Bacteria use [MoCu]-CO dehydrogenases (Mo-CODH) to convert atmospheric CO to carbon dioxide, transferring the obtained electrons to the aerobic respiratory chain. However, it is unknown how these enzymes oxidize CO at low concentrations and interact with the respiratory chain.

View Article and Find Full Text PDF

The VHL-containing cullin-RING E3 ubiquitin ligase (CRL2) complex is an E3 ligase commonly used in targeted protein degradation (TPD). Hydroxyproline-based ligands that mimic VHL substrates have been developed as anchor molecules for proteolysis-targeting chimeras (PROTACs) in TPD. To expand the chemical space for VHL ligands, we conducted fragment screening using VHL-ELOB-ELOC (VBC) proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!