The reaction of the chloro-complex [CpRuCl(PEt(3))(2)] with acetylene gas in methanol gave the pi-alkyne complex [CpRu(eta(2)-HCtbd1;CH)(PEt(3))(2)][BPh(4)] (1), which has been structurally characterized by X-ray analysis. The alkyne complex undergoes spontaneous isomerization even at low temperature, yielding the metastable alkynyl-hydride complex [CpRu(H)(Ctbd1;CH)(PEt(3))(2)][BPh(4)] (2), as the result of the oxidative addition of the alkyne C-H bond. This compound has also been structurally characterized despite it tautomerizes spontaneously into the stable primary vinylidene [CpRu(=C=CH(2))(PEt(3))(2)][BPh(4)] (3). This species has been alternatively prepared by a two-step deprotonation/protonation synthesis from the pi-alkyne complex. Moreover, the reaction of the initial chloro-complex with monosubstituted alkynes HCtbd1;CR (R = SiMe(3), Ph, COOMe, (t)Bu) has been studied without detection of pi-alkyne intermediates. Instead of this, alkynyl-hydride complexes were obtained in good yields. They also rearrange to the corresponding substituted vinylidenes. In the case of R = SiMe(3), the isomerization takes place followed by desilylation, yielding the primary vinylidene complex. X-ray crystal structures of the vinylidene complexes [CpRu(=C=CH(2))(PEt(3))(2)][BPh(4)] (3) and [CpRu(=C=CHCOOMe)(PEt(3))(2)][BPh(4)] (10) have also been determined. Both, full ab initio and quantum mechanics/molecular mechanics (QM/MM) calculations were carried out, respectively, on the model system [CpRu(C(2)H(2))(PH(3))(2)](+) (A) and the real complex [CpRu(C(2)H(2))(PEt(3))(2)](+) (B) to analyze the steric and electronic influence of ligands on the structures and relative energies of the three C(2)H(2) isomers. QM/MM calculations have been employed to evaluate the role of the steric effects of real ligands, whereas full ab initio energy calculations on the optimized QM/MM model have allowed recovering the electronic effects of ligands. Additional pure quantum mechanics calculations on [CpRu(C(2)H(2))(PH(3))(2)](+) (C) and [CpRu(C(2)H(2))(PMe(3))(2)](+) (D) model systems have been performed to analyze in more detail the effects of different ligands. Calculations have shown that the steric effects induced by the presence of bulky substituents in phosphine ligand are responsible for experimentally observed alkyne distortion and for relative destabilization of the alkyne isomer. Moreover, increasing the phosphine basicity and sigma donor capabilities of ligands causes a relative stabilization of an alkynyl-hydride isomer. The combination of both steric and electronic effects, makes alkyne and alkynyl-hydride isomers to be close in energy, leading to the isolation of both complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0291181 | DOI Listing |
Organometallics
February 2022
Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K.
A convenient and mild protocol for the gold-catalyzed intermolecular coupling of substituted indoles with carbonyl-functionalized alkynes to give vinyl indoles is reported. This reaction affords 3-substituted indoles in high yield, and in contrast to the analogous reactions with simple alkynes which give indolemethanes, only a single indole is added to the alkyne. The protocol is robust and tolerates substitution at a range of positions of the indole and the use of ester-, amide-, and ketone-substituted alkynes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2022
Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, CP, 50009, Zaragoza, Spain.
The dinuclear complex [Rh(μ-Cl)(η -coe)(IPr)] is an efficient catalyst for the O-selective Markovnikov-type addition of 2-pyridones to terminal alkynes. DFT calculations support a hydride-free pathway entailing intramolecular oxidative protonation of a π-alkyne by a κ N-hydroxypyridine ligand. Subsequent O-nucleophilic attack on a metallacyclopropene species affords an O-alkenyl-2-oxypyridine chelate rhodium intermediate as the catalyst resting state.
View Article and Find Full Text PDFJ Org Chem
March 2022
School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
Herein, we report a novel strategy for the formation of copper carbene via the cycloisomerization of the π-alkyne-Cu(I) complex from terminal alkynes and tropylium tetrafluoroborate. Mechanistic studies and DFT calculations indicate that the reaction undergoes the intramolecular cycloisomerization process from the π-alkyne-Cu(I) complex to afford the copper carbene intermediate, followed by migratory insertion with the second terminal alkyne to afford the barbaralyl-substituted allenyl acid esters. In addition, we develop a mild and highly efficient Cu(I)-catalyzed cross-coupling protocol to synthesize 7-alkynyl cycloheptatrienes that has a broad functional group tolerance and is applicable to the late-stage functionalization of natural products.
View Article and Find Full Text PDFJ Am Chem Soc
February 2021
Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
J Mol Model
June 2018
College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, 730010, China.
The reaction mechanism of Ru-catalyzed cycloisomerization of 2-alkynylanilides to 3-substituted indole or 2-substituted indole was analyzed at the B3LYP level of density functional theory. The solvation effect of the system was also considered by SMD model. The calculation results show that the reaction system first forms a ruthenium π-alkyne complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!