Temporal coupled-mode theory for the Fano resonance in optical resonators.

J Opt Soc Am A Opt Image Sci Vis

Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA.

Published: March 2003

We present a theory of the Fano resonance for optical resonators, based on a temporal coupled-mode formalism. This theory is applicable to the general scheme of a single optical resonance coupled with multiple input and output ports. We show that the coupling constants in such a theory are strongly constrained by energy-conservation and time-reversal symmetry considerations. In particular, for a two-port symmetric structure, Fano-resonant line shape can be derived by using only these symmetry considerations. We validate the analysis by comparing the theoretical predictions with three-dimensional finite-difference time-domain simulations of guided resonance in photonic crystal slabs. Such a theory may prove to be useful for response-function synthesis in filter and sensor applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/josaa.20.000569DOI Listing

Publication Analysis

Top Keywords

temporal coupled-mode
8
theory fano
8
fano resonance
8
resonance optical
8
optical resonators
8
symmetry considerations
8
theory
5
coupled-mode theory
4
resonance
4
resonators theory
4

Similar Publications

Fabry-Perot Resonances in Bilayer Metasurfaces.

Phys Rev Lett

November 2024

Institute of High-Performance Computing, Agency for Science, Technology, and Research (A-STAR), Fusionopolis, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore.

In this study, we construct Fabry-Perot cavities in which nanostructured, thin resonant metasurfaces act as mirrors. We develop a temporal coupled-mode theory and provide an accurate description of the resonances supported by these cavities, deriving analytically their transmission characteristics. The presence of metasurface mirrors introduces a substantial group delay, causing the field concentration to shift from the bulk of the cavity towards the regions close to the two metasurfaces.

View Article and Find Full Text PDF

Chemically synthesized gold nanoantennas possess easy processability, low cost, and suitability for large-area fabrication, making them advantageous for surface-enhanced infrared (SEIRA) biosensing. Nevertheless, current gold nanoantennas face challenges with limited enhancement of biomolecular signals that hinder their practical applications. Here, we demonstrate that the coupling rate between antennas and molecules critically impacts the enhancement of molecular signals based on temporal coupled mode theory.

View Article and Find Full Text PDF

Ultrafast Modulation of a Nonlocal Semiconductor Metasurface under Spatially Selective Optical Pumping.

Nano Lett

November 2024

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

Article Synopsis
  • Time-varying optical metasurfaces can change how light behaves dynamically, making them more interesting than static systems.
  • This study looks at using structured femtosecond laser pumping to control a specific mode in a semiconductor metasurface, which helps in understanding light manipulation.
  • The findings show a detailed way to control light in both space and time while also shedding light on how these extended modes in nonlocal metasurfaces are excited.
View Article and Find Full Text PDF

Quantum mechanics is applied to create numerous electronic devices, including lasers, electron microscopes, magnetic resonance imaging, and quantum information technology. However, the practical realization of cavity quantum electrodynamics (QED) in various applications is limited due to the demanding conditions required for achieving strong coupling between an optical cavity and excitonic matter. Here, we present biological cavity QED with self-aligned nanoring doublets: QED-SANDs, which exhibit robust room-temperature strong coupling with a biomolecular emitter, chlorophyll-.

View Article and Find Full Text PDF

Physics-Informed Inverse Design of Programmable Metasurfaces.

Adv Sci (Weinh)

November 2024

Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China.

Emerging reconfigurable metasurfaces offer various possibilities for programmatically manipulating electromagnetic waves across spatial, spectral, and temporal domains, showcasing great potential for enhancing terahertz applications. However, they are hindered by limited tunability, particularly evident in relatively small phase tuning over 270°, due to the design constraints with time-intensive forward design methodologies. Here, a multi-bit programmable metasurface is demonstrated capable of terahertz beam steering facilitated by a developed physics-informed inverse design (PIID) approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!