Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Peroxynitrite, a potent oxidant generated in inflammatory tissues, can nitrate tyrosine residues on a variety of proteins. Based on previous studies suggesting that actin might be a potential target for peroxynitrite-mediated nitration in neutrophils, we investigated the effects of peroxynitrite on actin function. We show here that peroxynitrite and the peroxynitrite generator (SIN-1) modified actin in a concentration-dependent manner, resulting in an inhibition of globular-actin polymerization and filamentous-actin depolymerization in vitro. The effects of peroxynitrite were inhibited by the pyrrolopyrimidine antioxidant PNU-101033E, which has been shown previously to specifically block peroxynitrite-mediated tyrosine nitration. Furthermore, spectrophotometric and immunoblot analysis of peroxynitrite-treated actin demonstrated a concentration-dependent increase in nitrotyrosine, which was also blocked by PNU-101033E. Activation of neutrophils in the presence of a nitric oxide donor (S-nitroso-N-acetylpenicillamine) resulted in nitration of exogenously added actin. Nitrated actin was also found in peroxynitrite-treated neutrophils, suggesting that actin may be an important intracellular target during inflammation. To investigate this issue, we analyzed the effect of peroxynitrite treatment on a number of actin-dependent neutrophil processes. Indeed, neutrophil actin polymerization, migration, phagocytosis, and respiratory burst activity were all inhibited by SIN-1 treatment in a concentration-dependent manner. Therefore, the ability of peroxynitrite to inhibit actin dynamics has a significant effect on actin-dependent, cellular processes in phagocytic cells and may modulate their host defense function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1189/jlb.0802401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!