To exclude that aromatization plays a role in the estrogenic activity of tibolone, we studied the effect tibolone and metabolites on the aromatization of androstenedione and the aromatization of tibolone and its metabolites to 7alpha-methyl-17alpha-ethynylestradiol (7alpha-MEE) by human recombinant aromatase. Testosterone (T), 17alpha-methyltestosterone (MT), 19-nortestosterone (Nan), 7alpha-methyl-19-nortestosterone (MENT) and norethisterone (NET) were used as reference compounds. Sensitive in vitro bioassays with steroid receptors were used to monitor the generation of product and the reduction of substrate. LC-MSMS without derivatization was used for structural confirmation. A 10 times excess of tibolone and its metabolites did not inhibit the conversion of androstenedione to estrone by human recombinant aromatase as determined by estradiol receptor assay whereas T, MT, Nan, and MENT inhibited the conversion for 75, 53, 85 and 67%, respectively. Tibolone, 3alpha- and 3beta-hydroxytibolone were not converted by human aromatase whereas the estrogenic activity formed with the Delta4-isomer suggests a conversion rate of 0.2% after 120 min incubation. In contrast T, MT, Nan, and MENT were completely converted to their A-ring aromates within 15 min while NET could not be aromatized. Aromatization of T, MT, Nan and MENT was confirmed with LC-MSMS. Structure/function analysis indicated that the 17alpha-ethynyl-group prevents aromatization of (19-nor)steroids while 7alpha-methyl substitution had no effect. Our results with the sensitive estradiol receptor assays show that in contrast to reference compounds tibolone and its metabolites are not aromatized.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0039-128x(02)00184-8DOI Listing

Publication Analysis

Top Keywords

tibolone metabolites
16
nan ment
12
converted human
8
human aromatase
8
7alpha-methyl-17alpha-ethynylestradiol 7alpha-mee
8
estrogenic activity
8
human recombinant
8
recombinant aromatase
8
reference compounds
8
estradiol receptor
8

Similar Publications

Effect of Chronic Tibolone Administration on Memory and Choline Acetyltransferase and Tryptophan Hydroxylase Content in Aging Mice.

Brain Sci

September 2024

Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico.

Gonadal steroids exert different effects on the central nervous system (CNS), such as preserving neuronal function and promoting neuronal survival. Estradiol, progesterone, and testosterone reduce neuronal loss in the CNS in animal models of neurodegeneration. However, hormone replacement therapy has been associated with higher rates of endometrial, prostate, and breast cancer.

View Article and Find Full Text PDF

Network pharmacology and topological analysis on tibolone metabolites and their molecular mechanisms in traumatic brain injury.

Biomed Pharmacother

September 2023

Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.

Traumatic brain injury (TBI) is a pathology of great social impact, affecting millions of people worldwide. Despite the scientific advances to improve the management of TBI in recent years, we still do not have a specific treatment that controls the inflammatory process after mechanical trauma. The discovery and implementation of new treatments is a long and expensive process, making the repurpose of approved drugs for other pathologies a clinical interest.

View Article and Find Full Text PDF

Lipotoxicity is a metabolic condition resulting from the accumulation of free fatty acids in non-adipose tissues which involves a series of pathological responses triggered after chronic exposure to high levels of fatty acids, severely detrimental to cellular homeostasis and viability. In brain, lipotoxicity affects both neurons and other cell types, notably astrocytes, leading to neurodegenerative processes, such as Alzheimer (AD) and Parkinson diseases (PD). In this study, we performed for the first time, a whole lipidomic characterization of Normal Human Astrocytes cultures exposed to toxic concentrations of palmitic acid and the protective compound tibolone, to establish and identify the set of potential metabolites that are modulated under these experimental treatments.

View Article and Find Full Text PDF

Background: New potential biological targets prediction through inverse molecular docking technique is another smart strategy to forecast the possibility of compounds being biologically active against various target receptors.

Objective: In this case of designed study, we screened our recently obtained novel acetylenic steroidal biotransformed products [(1) 8-β-methyl-14-α-hydroxyΔ4tibolone (2) 9-α-HydroxyΔ4 tibolone (3) 8-β-methyl-11-β-hydroxyΔ4tibolone (4) 6-β-hydroxyΔ4tibolone, (5) 6-β-9-α-dihydroxyΔ4tibolone (6) 7-β-hydroxyΔ4tibolone)] from fungi Cunninghemella Blakesleana to predict their possible biological targets and profiling of ADME properties.

Methods: The prediction of pharmacokinetic properties, membrane permeability, and bioavailability radar properties was carried out by using Swiss target prediction and Swiss ADME tools, respectively.

View Article and Find Full Text PDF

Network pharmacology identifies IL6 as an important hub and target of tibolone for drug repurposing in traumatic brain injury.

Biomed Pharmacother

August 2021

Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland. Electronic address:

Traumatic brain injury (TBI) is characterized by a complex network of signals mediating inflammatory, proliferative and apoptotic processes during its acute and chronic phases. Current therapies mitigate damage and are mainly for palliative care and there are currently no effective therapies for secondary damage. This suggests a need to discover a compound with a greater spectrum of action that can control various pathological aspects of TBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!