Toxicogenomics of bromobenzene hepatotoxicity: a combined transcriptomics and proteomics approach.

Biochem Pharmacol

TNO Nutrition and Food Research, P.O. Box 360, 3700 AJ Zeist, The Netherlands.

Published: March 2003

Toxicogenomics is a novel approach integrating the expression analysis of thousands of genes (transcriptomics) or proteins (proteomics) with classical methods in toxicology. Effects at the molecular level are related to pathophysiological changes of the organisms, enabling detailed comparison of mechanisms and early detection and prediction of toxicity. This report addresses the value of the combined use of transcriptomics and proteomics technologies in toxicology. Acute hepatotoxicity was induced in rats by bromobenzene administration resulting in depleted glutathione levels and reduced average body weights, 24hr after dosage. These physiological symptoms coincided with many changes of hepatic mRNA and protein content. Gene induction confirmed involvement of glutathione-S-transferase isozymes and epoxide hydrolase in bromobenzene metabolism and identified many genes possibly relevant in bromobenzene toxicity. Observed glutathione depletion coincided with induction of the key enzyme in glutathione biosynthesis, gamma-glutamylcysteine synthetase. Oxidative stress was apparent from strong upregulation of heme oxygenase, peroxiredoxin 1 and other genes. Bromobenzene-induced protein degradation was suggested from two-dimensional gel electrophoresis, upregulated mRNA levels for proteasome subunits and lysosomal cathepsin L, whereas also genes were upregulated with a role in protein synthesis. Both protein and gene expression profiles from treated rats were clearly distinct from controls as shown by principal component analysis, and several proteins found to significantly change upon bromobenzene treatment were identified by mass spectrometry. A modest overlap in results from proteomics and transcriptomics was found. This work indicates that transcriptomics and proteomics technologies are complementary to each other and provide new possibilities in molecular toxicology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-2952(02)01613-1DOI Listing

Publication Analysis

Top Keywords

transcriptomics proteomics
12
combined transcriptomics
8
proteomics technologies
8
transcriptomics
5
proteomics
5
toxicogenomics bromobenzene
4
bromobenzene hepatotoxicity
4
hepatotoxicity combined
4
proteomics approach
4
approach toxicogenomics
4

Similar Publications

Previous studies have reported that chronic lymphocytic leukemia (CLL) shows a de novo chromatin activation pattern as compared to normal B cells. Here, we explored whether the level of chromatin activation is related to the clinical behavior of CLL. We identified that in some regulatory regions, increased de novo chromatin activation is linked to clinical progression whereas, in other regions, it is associated with an indolent course.

View Article and Find Full Text PDF

Next-generation sequencing has revealed the disruptive reality that advanced/metastatic cancers have complex and individually distinct genomic landscapes, necessitating a rethinking of treatment strategies and clinical trial designs. Indeed, the molecular reclassification of cancer suggests that it is the molecular underpinnings of the disease, rather than the tissue of origin, that mostly drives outcomes. Consequently, oncology clinical trials have evolved from standard phase 1, 2, and 3 tissue-specific studies; to tissue-specific, biomarker-driven trials; to tissue-agnostic trials untethered from histology (all drug-centered designs); and, ultimately, to patient-centered, N-of-1 precision medicine studies in which each patient receives a personalized, biomarker-matched therapy/combination of drugs.

View Article and Find Full Text PDF

WDR74-Mediated Ribosome Biogenesis and Proteome Dynamics During Mouse Preimplantation Development.

Genes Cells

January 2025

Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, Japan.

Preimplantation embryonic development is orchestrated by dynamic changes in the proteome and transcriptome, regulated by mechanisms such as maternal-to-zygotic transition. Here, we employed label-free quantitative proteomics to comprehensively analyze proteome dynamics from germinal vesicle oocytes to blastocysts in mouse embryos. We identified 3490 proteins, including 715 consistently detected across all stages, revealing stage-specific changes in proteins associated with translation, protein modification, and mitochondrial metabolism.

View Article and Find Full Text PDF

Genomic analysis has played a significant role in the identification of driver mutations that are linked to disease progression and response to drug treatment in ovarian cancer. A prominent example is the stratification of epithelial ovarian cancer (EOC) patients with homologous recombination deficiency (HRD) characterized by mutations in DNA damage repair genes such as for treatment with PARP inhibitors. However, recent studies have shown that some epithelial ovarian tumors respond to PARP inhibitors irrespective of their HRD or mutation status.

View Article and Find Full Text PDF

Background: Metabolic Syndrome (MS) is a cluster of conditions that significantly increase the risk of infertility in women. Granulosa cells are crucial for ovarian folliculogenesis and fertility. Understanding molecular alterations in these cells can provide insights into MS-associated infertility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!