A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Statin effects on cholesterol micro-domains in brain plasma membranes. | LitMetric

Statin effects on cholesterol micro-domains in brain plasma membranes.

Biochem Pharmacol

Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Marie-Curie-Str. 9, Germany.

Published: March 2003

Recent epidemiological studies revealed inhibitors of the hydroxymethylglutaryl-coenzyme A reductase, so-called statins, to be effective in lowering the prevalence of Alzheimer's disease (AD). In vitro, statins strongly reduced the cellular amyloid beta-protein load by modulating the processing of the amyloid beta precursor protein. Both observations are probably linked to cellular cholesterol homeostasis in brain. So far, little is known about brain effects of statins. Recently, we could demonstrate that treatment of mice with the lipophilic compound lovastatin resulted in a discrete reduction of brain membrane cholesterol levels. To follow up these findings, we subsequently carried out a further in vivo study including lovastatin and simvastatin as lipophilic agents, as well as pravastatin as a hydrophilic compound, focussing on their efficiency to affect subcellular membrane cholesterol pools in synaptosomal plasma membranes of mice. In contrast to the hydrophilic pravastatin, the lipophilic lovastatin and simvastatin strongly reduced the levels of free cholesterol in SPM. Interestingly, lovastatin and pravastatin but not simvastatin significantly reduced cholesterol levels in the exofacial membrane leaflet. These changes were accompanied by modified membrane bulk fluidity. All three statins reduced the expression of the raft marker protein flotillin. Alterations in transbilayer cholesterol distribution have been suggested as the underlying mechanism that forces amyloidogenic processing of APP in AD. Thus, our data give some first insight in the mode of action of statins to reduce the prevalence of AD in clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-2952(02)01654-4DOI Listing

Publication Analysis

Top Keywords

plasma membranes
8
statins reduced
8
membrane cholesterol
8
cholesterol levels
8
lovastatin simvastatin
8
simvastatin reduced
8
cholesterol
7
statins
5
statin effects
4
effects cholesterol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!