AI Article Synopsis

  • Three models exist for how the mitotic apparatus positions the cleavage furrow in animal cells, varying in terms of astral microtubule involvement and spindle midzone influence.
  • A new model, based on observations in sand dollar and sea urchin eggs, suggests that gradients of microtubule plus ends affect membrane proteins that lead to contractile-ring formation.
  • Simulation studies of conical sand dollar eggs indicate that this new model accurately predicts the emergence of unilateral furrows, unlike the other models, and can account for the relationship between the mitotic apparatus and the contractile ring under different experimental settings.

Article Abstract

Three types of models have been proposed about how the mitotic apparatus determines the position of the cleavage furrow in animal cells. In the first and second types, the contractile ring appears in a cortical region that least and most astral microtubules reach, respectively. The third type is that the spindle midzone positions the contractile ring. In the previous study, a new model was proposed through analyses of cytokinesis in sand dollar and sea urchin eggs. Gradients of the surface density of microtubule plus ends are assumed to drive membrane proteins whose accumulation causes the formation of contractile-ring microfilaments. In the present study, the validity of each model is examined by simulating the furrow formation in conical sand dollar eggs with the mitotic apparatus oriented perpendicular to the cone axis. The new model predicts that unilateral furrows with cleavage planes roughly parallel to the spindle axis appear between the mitotic apparatus and the vertex besides the normally positioned furrow. The predictions are consistent with the observations by Rappaport & Rappaport (1994, Dev. Biol.164, 258-266). The other three types of models do not predict the formation of the ectopic furrows. Furthermore, it is pointed out that only the new model has the ability to explain the geometrical relationship between the mitotic apparatus and the contractile ring under various experimental conditions. These results strongly suggest the real existence of the membrane proteins postulated in the model.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jtbi.2003.3186DOI Listing

Publication Analysis

Top Keywords

contractile ring
16
mitotic apparatus
16
sand dollar
12
parallel spindle
8
spindle axis
8
conical sand
8
three types
8
types models
8
membrane proteins
8
model
5

Similar Publications

The gastrointestinal epithelium serves as a critical barrier separating intestinal lumen contents from the underlying tissue environment. Structure and function of the apical junctional complex (AJC), comprising tight and adherens junctions, are essential for establishing and maintaining a polarized and functional epithelial barrier. In this study, we investigated mechanisms by which an apical polarity protein Crumbs homolog 3 (CRB3) regulates AJC assembly and barrier function in primary murine intestinal epithelial cells.

View Article and Find Full Text PDF

In Vitro Formation of Actin Ring in the Fission Yeast Cell Extracts.

Cytoskeleton (Hoboken)

January 2025

Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan.

Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles.

View Article and Find Full Text PDF

The Munc13/UNC-13 family protein Ync13 is essential for septum integrity and cytokinesis in fission yeast. To further explore the mechanism of Ync13 functions, spontaneous suppressors of mutants, which can suppress the colony-formation defects and lysis phenotype of mutant cells, are isolated and characterized. One of the suppressor mutants, -, shows defects in the cytokinetic contractile ring constriction, septation, and daughter-cell separation, similar to mutant.

View Article and Find Full Text PDF

Conventional two-dimensional (2D) cardiomyocyte differentiation protocols create cells with limited maturity, which impairs their predictive capacity and has driven interest in three-dimensional (3D) engineered cardiac tissue models of varying maturity and scalability. Cardiac spheroids are attractive high-throughput models that have demonstrated improved functional and transcriptional maturity over conventional 2D differentiations. However, these 3D models still tend to have limited contractile and electrical maturity compared to highly engineered cardiac tissues; hence, we incorporated a library of conductive polymer microfibers in cardiac spheroids to determine if fiber properties could accelerate maturation.

View Article and Find Full Text PDF

Unlabelled: Cell division is a fundamental process ensuring the perpetuation of all cellular life forms. Archaea of the order Sulfolobales divide using a simpler version of the eukaryotic endosomal sorting complexes required for transport (ESCRT) machinery, composed of three ESCRT-III homologs (ESCRT-III, -III-1, and -III-2), AAA+ ATPase Vps4 and an archaea-specific component CdvA. Here, we clarify how these components act sequentially to drive the division of the hyperthermophilic archaeon .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!