A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A fully coupled binary biochemical reactive-diffusion model with analytic solution. | LitMetric

A fully coupled binary biochemical reactive-diffusion model with analytic solution.

J Theor Biol

Department of Radiology, The University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.

Published: March 2003

Coupled multicomponent biochemical reactive diffusion underlies a variety of biological signalling processes and pharmacokinetic applications, such as paracrine signalling involving "cocktails" comprised of growth promoter/inhibitor factors and proteases associated with tumor angiogenesis, invasion and metastasis, extravascular drug delivery, and polymeric controlled-release drug codelivery design. Here, we present a model and develop a new analytic solution to illustrate the spatiotemporal behavior associated with fully coupled binary biochemical reactive diffusion. The complete coupling renders the solution appreciably more complex in structure and behavior than solutions for unicomponent or partially coupled models. Concentration behavior is illustrated by the computational simulation of binary-species tumor angiogenesis factor reactive-diffusion in the extravascular tissue matrix. The computational results indicate that (a) steady-state concentration profiles are achieved within 1 h of a change in factor production; (b) in the steady state, the spatial profiles of the two components tend to be similar; (c) exceedingly steep concentration gradients, involving several orders-of-magnitude differences in concentration over a few tenths of a millimeter, can occur in the vicinity of boundary sources due to inter-species reaction; (d) the concentration profiles of the two species differ from unicomponent predictions due to the simultaneous mass interchange between the two species. The analytic solution predictions are also used to provide a first-ever validation of a time-dependent, binary-component Crank-Nicholson numerical solution. The ability to quantitatively model interacting and often strongly varying concentration levels as a function of time and position can serve as a powerful complementary tool to experimental analyses for assessing disease state and interventional pharmacological efficacy, especially when the spatial scales on which in vivo behavior occurs taxes the limits of imaging capabilities.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jtbi.2003.3170DOI Listing

Publication Analysis

Top Keywords

analytic solution
12
fully coupled
8
coupled binary
8
binary biochemical
8
biochemical reactive
8
reactive diffusion
8
tumor angiogenesis
8
concentration profiles
8
concentration
6
solution
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!