Studies on bioremediation of polycyclic aromatic hydrocarbon-contaminated sediments: bioavailability, biodegradability, and toxicity issues.

Environ Toxicol Chem

Land Remediation and Pollution Control Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King, Jr. Drive, Cincinnati, Ohio 45268, USA.

Published: March 2003

The widespread contamination by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes. This research studied a chronically PAH-contaminated estuarine sediment from the East River (ER; NY, USA) characterized by high concentrations of PAHs (approximately 4-190 ppm), sulfide, and metals and a marine sediment from New York/ New Jersey Harbor (NY/NJH; USA) with only trace quantities of PAHs (0.1-0.6 ppm). The focus was to examine the relationship between bioavailability of PAHs and their biological removal in a slurry system. Freshwater and marine sediment toxicity tests were conducted to measure baseline toxicity of both sediments to amphipods, aquatic worms, fathead and sheepshead minnow larvae, and a vascular plant; to determine the cause of toxicity; and to evaluate the effectiveness of the biotreatment strategies in reducing toxicity. Results showed the ER sediment was acutely toxic to all freshwater and marine organisms tested and that the toxicity was mainly caused by sulfide, PAHs, and metals present in the sediment. In spite of the high toxicity, most of the PAH compounds showed significant degradation in the aerobic sediment/water slurry system if the initial high oxygen demand due to the high sulfide content of the sediment was overcome. The removal of PAHs by biodegradation was closely related to their desorbed amount in 90% isopropanol solution during 24 h of contact, while the desorption of model PAH compounds from freshly spiked NY/NJH sediment did not describe the bioavailability of PAHs in the East River sediment well. The research improves our understanding of bioavailability as a controlling factor in bioremediation of PAHs and the potential of aerobic biodegradation for PAH removal and ecotoxicity reduction.

Download full-text PDF

Source

Publication Analysis

Top Keywords

polycyclic aromatic
8
pahs
8
sediment
8
east river
8
marine sediment
8
bioavailability pahs
8
slurry system
8
freshwater marine
8
pah compounds
8
toxicity
7

Similar Publications

Lebanon, plagued by political and economic crises, experienced a government collapse in early 2020, leading to an electrical nationwide blackout by 2023. Diesel generators were used to compensate for the absence of power production from the national provider, Electricité du Liban (EDL). To investigate the effect of the crisis on the levels of 16 EPA particle bound polycyclic aromatic hydrocarbons (PPAHs), an annual comparative analysis of three locations within Beirut started in 2022 and ended in 2023.

View Article and Find Full Text PDF

Joint association of polycyclic aromatic hydrocarbon and heavy metal exposures with sex steroid hormones in children and adolescents aged 6-19 years in NHANES 2013-2016.

Environ Monit Assess

December 2024

Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.

Sex hormone homeostasis is crucial for the proper development of children and adolescents. Previous studies have indicated that exposure to heavy metals and polycyclic aromatic hydrocarbons (PAHs) is linked to disruptions in sex hormone levels in this age group. However, there is limited research on the harm caused by exposure to chemical mixtures.

View Article and Find Full Text PDF

Atmospheric particulate matter (PM) is one of the most dangerous air pollutants of anthropogenic origin; it consists of a heterogeneous mixture of inorganic and organic components, including transition metals and polycyclic aromatic hydrocarbons. Although previous studies have focused on the effects of exposure to highly concentrated PM on the respiratory and cardiovascular systems, emerging evidence supports a significant impact of air pollution on the gastrointestinal (GI) tract by linking exposure to external stressors with conditions such as appendicitis, colorectal cancer, and inflammatory bowel disease. In general, it has been hypothesized that the main mechanism involved in PM toxicity consists of an inflammatory response and this has also been suggested for the GI tract.

View Article and Find Full Text PDF

Source attribution, health risk analysis, and policy implications of PAHs and NPAHs in PM[Formula: see text] in Northern Mexico.

Sci Rep

December 2024

Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Mty), Unidad Monterrey, Alianza Norte 202, Apodaca, N.L., C.P. 66628, Mexico.

This research investigates the concentrations, sources, and health risks of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in particulate matter with an aerodynamic diameter of 10 μm or less (PM[Formula: see text]) from critical urban centers in northern Mexico: Metropolitan Monterrey Area (MMA), Chihuahua (CHI), and Ciudad Juárez (CDJ). Advanced gas chromatography-mass spectrometry (GC-MS and GC-NCI-MS) revealed significant PAHs concentrations, with levels in MMA reaching 108.89 ± 99.

View Article and Find Full Text PDF

Elucidating the formation mechanism of polycyclic aromatic hydrocarbons (PAHs) is crucial to understand processes in the contexts of combustion, environmental science, astrochemistry, and nanomaterials synthesis. An excited electronic-state pathway has been proposed to account for the formation of 14π aromatic anthracene in the benzyl (b-CH) self-reaction. Here, to improve our understanding of anthracene formation, we investigate CH bimolecular reactions in a tubular SiC microreactor through an isomer-resolved method that combines in situ synchrotron-radiation VUV photoionization mass spectrometry and ex-situ gas chromatography-mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!