We previously reported that patients homozygous for a specific mutation (M280) in the chemokine receptor CX3CR1 progressed to AIDS more rapidly than those with other genotypes. This deleterious effect would predict that a cohort of prevalent patients would be depleted in M280 carriers, because these patients would have disappeared before recruitment. This hypothesis is confirmed in this new study based on the French SEROCO cohort showing that patients homozygous for the M280 allele were rare among the seroprevalent group. These results may explain the conflicting results published on the impact of CX3CR1 polymorphism in seroconverters.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00126334-200303010-00014DOI Listing

Publication Analysis

Top Keywords

patients homozygous
8
deleterious genetic
4
genetic influence
4
influence cx3cr1
4
cx3cr1 genotypes
4
genotypes hiv-1
4
hiv-1 disease
4
disease progression
4
progression reported
4
patients
4

Similar Publications

Aims: Sarcoendoplasmic reticulum Ca-ATPase 2 (SERCA2), encoded by ATP2A2, is a key protein involved in intracellular Ca homeostasis. The SERCA2a isoform is predominantly expressed in cardiomyocytes and type I myofibres. Variants in this gene are related to Darier disease, an autosomal dominant dermatologic disorder, but have never been linked to myopathy.

View Article and Find Full Text PDF

Mutations or homozygous deletions of MHC class II (MHC-II) genes are commonly found in B cell lymphomas that develop in immune-privileged sites and have been associated with patient survival. However, the mechanisms regulating MHC-II expression, particularly through genetic and epigenetic factors, are not yet fully understood. In this study, we identified a key signaling pathway involving the histone H2AK119 deubiquitinase BRCA1 associated protein 1 (BAP1), the interferon regulatory factor interferon regulatory factor 1 (IRF1), and the MHC-II transactivator class II transactivator (CIITA), which directly activates MHC-II gene expression.

View Article and Find Full Text PDF

Unraveling the genetic mysteries of spinal muscular atrophy in Chinese families.

Orphanet J Rare Dis

January 2025

The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, 450052, Henan, China.

Objective: Spinal muscular atrophy (SMA) is a motor neuron disorder encompassing 5q and non-5q forms, causing muscle weakness and atrophy due to spinal cord cell degeneration. Understanding its genetic basis is crucial for genetic counseling and personalized treatment options.

Methods: This study retrospectively analyzed families of patients suspected of SMA at our institution from February 2006 to March 2024.

View Article and Find Full Text PDF

Liver transplantation for homozygous familial hypercholesterolemia: a retrospective analysis from Chinese experience.

Orphanet J Rare Dis

January 2025

Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Background: Homozygous familial hypercholesterolaemia (HoFH) increases risk of premature cardiovascular events and cardiac death. In severe cases of HoFH, clinical signs and symptoms cannot be controlled well by non-surgical treatments, liver transplantation (LT) currently represents the viable option.

Method: To assess the clinical efficacy, prognosis, and optimal timing of LT for HoFH, a retrospective analysis was conducted on the preoperative, surgical conditions, and postoperative follow-up of children who received an LT for HoFH at the Beijing Friendship Hospital over the period from December 2014 to August 2022.

View Article and Find Full Text PDF

A homozygous individual for ITGB7 gene mutation, an autosomal recessive congenital disorder in Holstein cattle, was retrospectively identified by genotyping of 195 stored blood from patients less than 12 months of age. Other 24 patients (12.3%) showed heterozygous.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!