Cyclosporine A (CsA) causes distal renal tubular acidosis (dRTA) in humans and rodents. Because mice deficient in nitric-oxide (NO) synthase develop acidosis, we examined how NO production modulated H+ excretion during acid loading and CsA treatment in a rat model. Rats received CsA, L-arginine (L-Arg), or N omega-nitro-L-arginine methyl ester (L-NAME), or combinations of CsA and L-NAME or L-Arg, followed by NH4Cl (acute acid load). In vehicle-treated rats, NH4Cl loading reduced serum and urine (HCO3-) and urine pH, which was associated with increases in serum [K+] and [Cl-] and urine NH3 excretion. Similar to CsA (7.5 mg/kg), L-NAME impaired H+ excretion of NH4Cl-loaded animals. The combination CsA and L-NAME reduced H+ excretion to a larger extent than either drug alone. In contrast, administration of L-Arg ameliorated the effect of CsA on H+ excretion. Urine pH after NH4Cl was 5.80 +/- 0.09, 6.11 +/- 0.13*, 6.37 +/- 0.16*, and 5.77 +/- 0.09 in the vehicle, CsA, CsA + L-NAME and CsA + L-Arg groups, respectively (*P < 0.05). The effect of CsA and alteration of NO synthesis were mediated at least in part by changes in bicarbonate absorption in perfused cortical collecting ducts. CsA or L-NAME reduced net HCO3- absorption, and, when combined, completely inhibited it. CsA + L-Arg restored HCO3- absorption to near control levels. Administration of CsA along with L-NAME reduced NO production to below levels observed with either drug alone. These results suggest that CsA causes dRTA by inhibiting H+ pumps in the distal nephron. Inhibition of NO synthesis may be one of the mechanisms underlying the CsA effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.102.048207 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!