We report an inducible system of self Ag expression that examines the relationship between serum protein levels and central T cell tolerance. This transgenic approach is based on tetracycline-regulated expression of a secreted form of hen egg lysozyme, tagged with a murine hemoglobin (Hb) epitope. In the absence of the tetracycline-regulated transactivator, serum levels of the chimeric protein are extremely low (< or = 0.1 ng/ml) and the mice show partial tolerance to both Hb(64-76) and lysozyme epitopes. In the presence of the transactivator, expression increases to 1.5 ng/ml and the mice are completely tolerant. Partial tolerance was further investigated by crossing these mice to strains expressing transgenic TCRs. At the lowest Ag levels, 3.L2tg T cells (specific for Hb(64-76)/I-E(k)) escape the thymus and approximately 10% of CD4(+) splenocytes express the 3.L2 TCR. In contrast, 3A9 T cells (specific for hen egg lysozyme(46-61)/I-A(k)) are completely eliminated by negative selection. These data define a tolerogenic threshold for negative selection of Ag-specific T cells by circulating self proteins that are 100-fold more sensitive than previously demonstrated. They suggest that partial tolerance at extremely low levels of self Ag exposure is the result of a restricted repertoire of responding T cells, rather than a simple reduction in precursor frequency; tolerogenic thresholds are T cell specific.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.170.6.3007DOI Listing

Publication Analysis

Top Keywords

partial tolerance
12
central cell
8
cell tolerance
8
serum protein
8
hen egg
8
extremely low
8
ng/ml mice
8
cells specific
8
negative selection
8
tolerance
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!