A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fibroblast growth factor receptor-1 and neonatal compensatory lung growth after exposure to 95% oxygen. | LitMetric

Neonatal rats exposed to 95% oxygen (O2) for 7 days from birth had inhibited lung growth, DNA synthesis, and secondary septation. These parameters were rapidly restored by a period of recovery in air. Northern and Western blot analysis and immunohistochemistry were used to screen for the fibroblast growth factor receptor-1 (FGF-R1) and its high affinity ligand, basic fibroblast growth factor (bFGF), which could have a role in this recovery process. Expression of bFGF in the lung was significantly reduced at the end of the 7-day exposure to 95% O2 and was increased after 3 days of recovery in air. Expression of FGF-R1 was not affected by exposure to 95% O2 or recovery in air. We hypothesized that the increase in bFGF after removal from 95% O2, acting through the FGF-R1, would be critical for compensatory growth. Intraperitoneal injection of soluble truncated FGF-R1 at the onset of the recovery phase arrested compensatory lung DNA synthesis and secondary septation seen in control animals after 3 days of recovery, confirming a role for FGF-R1 in this model of compensatory neonatal lung growth.

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.200207-662OCDOI Listing

Publication Analysis

Top Keywords

fibroblast growth
12
growth factor
12
lung growth
12
exposure 95%
12
recovery air
12
factor receptor-1
8
compensatory lung
8
95% oxygen
8
dna synthesis
8
synthesis secondary
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!