On the incorporation of multi-modality image registration into the radiotherapy treatment planning process.

Technol Cancer Res Treat

University of Wisconsin, Department of Human Oncology, 600 Highland Ave, Madison, WI 53792, USA.

Published: February 2003

A technique is presented that allows the direct use of physiological image sets in the radiation therapy treatment planning process. When fused to the treatment planning CT, physiological image studies may allow one to define physiological tumor subvolumes consisting of areas of possible chronic hypoxia, areas of high perfusion, areas of high diffusion, and areas containing high choline concentrations. These physiological tumor subvolumes could be selectively boosted to increase local control of malignant brain tumors once one has determined which of these physiological tumor subvolumes predicts for local tumor recurrence after conventional radiotherapy. In this technique a user assisted automatic registration technique is used that is based on an analytical estimate for the transformation matrix needed to register two rigid bodies. The only user input needed is three non-collinear points selected based on landmarks in the primary image and the corresponding three points in the secondary image. Since this registration technique uses two sets of at least three user-defined landmark points each of which has some selection error associated with it, the final registration will have an error that depends only on the selection error associated with the point sets. Since physiological image studies are acquired at the same setting as the T1- w MRI their spatial orientation with respect to the T1- w MRI is known. Therefore, the registration of multiple physiological image studies to the treatment planning CT can be accomplished by first correlating them to the T1- w MRI, and in a second step the T1- w MRI is then registered to the treatment planning CT. The desired registration of the physiological image studies to the treatment planning CT is then accomplished by simply composing the appropriate transformation matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1177/153303460300200101DOI Listing

Publication Analysis

Top Keywords

treatment planning
24
physiological image
20
image studies
16
t1- mri
16
physiological tumor
12
tumor subvolumes
12
areas high
12
image
8
image registration
8
planning process
8

Similar Publications

Validity of one-time phantomless patient-specific quality assurance in proton therapy with regard to the reproducibility of beam delivery.

Med Phys

January 2025

OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.

Background: Patient-specific quality assurance (PSQA) is a crucial yet resource-intensive task in proton therapy, requiring special equipment, expertise and additional beam time. Machine delivery log files contain information about energy, position and monitor units (MU) of all delivered spots, allowing a reconstruction of the applied dose. This raises the prospect of phantomless, log file-based QA (LFQA) as an automated replacement of current phantom-based solutions, provided that such an approach guarantees a comparable level of safety.

View Article and Find Full Text PDF

Purpose: The study explores the role of multimodal imaging techniques, such as [F]F-PSMA-1007 PET/CT and multiparametric MRI (mpMRI), in predicting the ISUP (International Society of Urological Pathology) grading of prostate cancer. The goal is to enhance diagnostic accuracy and improve clinical decision-making by integrating these advanced imaging modalities with clinical variables. In particular, the study investigates the application of few-shot learning to address the challenge of limited data in prostate cancer imaging, which is often a common issue in medical research.

View Article and Find Full Text PDF

Background: Online adaptive radiotherapy (OART) and rapid quality assurance (QA) are essential for effective heavy ion therapy (HIT). However, there is a shortage of deep learning (DL) models and workflows for predicting Monte Carlo (MC) doses in such treatments.

Purpose: This study seeks to address this gap by developing a DL model for independent MC dose (MCDose) prediction, aiming to facilitate OART and rapid QA implementation for HIT.

View Article and Find Full Text PDF

Objectives: In advanced stages of osteoradionecrosis, medication-related osteonecrosis of the jaw, and osteomyelitis, a resection of sections of the mandible may be unavoidable. The determination of adequate bony resection margins is a fundamental problem because bony resection margins cannot be secured intraoperatively. Single-photon emission computed tomography (SPECT-CT) is more accurate than conventional imaging techniques in detecting inflammatory jaw pathologies.

View Article and Find Full Text PDF

Objectives: To assess the complication rates associated with split versus intact appendix Mitrofanoff procedures using a single-center retrospective analysis and a systematic review with meta-analysis.

Subjects And Methods: The study comprised a retrospective cohort analysis at a single institution, analyzing patients who underwent a laparoscopic-assisted Mitrofanoff with or without splitting the appendix from 2005 to 2016. The focus was on complications related to both Mitrofanoff and ACE channels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!