Complex coacervation of whey proteins and gum arabic.

Biomacromolecules

NIZO food research, P.O. Box 20, 6710 BA Ede, The Netherlands.

Published: December 2003

Mixtures of gum arabic and whey protein (whey protein isolate, WP) form an electrostatic complex in a specific pH range. Three phase boundaries (pH(c), pHphi(1), pHphi(2)) have been determined using an original titration method, newly applied to complex coacervation. It consists of monitoring the turbidity and light scattering intensity under slow acidification in situ with glucono-delta-lactone. Furthermore, the particle size could also be measured in parallel by dynamic light scattering. When the pH is lowered, whey proteins and gum arabic first form soluble complexes. This boundary is designated as pH(c). When the interaction is stronger (at lower pH), phase separation takes place (at pHphi(1)). Finally, at pHphi(2) complexation was suppressed by the charge reduction of the gum arabic. The major constituent of the whey protein preparation used was beta-lactoglobulin (beta-lg), and it was shown that beta-lg was indeed the main complex-forming protein. Moreover, an increase of the ionic strength shifted the pH boundaries to lower pH values, which was summarized in a state diagram. The experimental pH(c) values were compared to a newly developed theory for polyelectrolyte adsorption on heterogeneous surfaces. Finally, the influence of the total biopolymer concentration (0-20% w/w) was represented in a phase diagram. For concentrations below 12%, the results are consistent with the theory on complex coacervation developed by Overbeek and Voorn. However, for concentrations above 12%, phase diagrams surprisingly revealed a "metastable" region delimited by a percolation line. Overall, a strong similarity is seen between the behavior of this system and a colloidal gas-liquid phase separation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm025667nDOI Listing

Publication Analysis

Top Keywords

gum arabic
16
complex coacervation
12
whey protein
12
whey proteins
8
proteins gum
8
light scattering
8
phase separation
8
concentrations 12%
8
whey
5
phase
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!