Unplanned releases of ammonia lead more often to evacuation and injury than releases of other chemicals, but few studies have systematically investigated ammonia releases. We analyzed Hazardous Substances Emergency Events Surveillance system data for 1993-1998. Evacuation of a total of at least 40,680 persons resulted from 537 ammonia releases, and 248 ammonia releases led to injury of 1434 persons. Equipment failure and operator error were cited as factors contributing to ammonia releases 90% of the time. Eighty-seven percent of releases occurred at fixed facilities. Risk factors for evacuation and injury differed between the food-manufacturing industry and other industries. Indoor release was a consistent risk factor, whereas quantity of ammonia released was not always a risk factor. Preventive maintenance and worker training may be effective tools to reduce the burdens of hazardous ammonia releases.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.jom.0000048168.87707.8bDOI Listing

Publication Analysis

Top Keywords

ammonia releases
24
evacuation injury
12
releases
9
hazardous ammonia
8
risk factors
8
factors evacuation
8
risk factor
8
ammonia
7
releases public
4
public health
4

Similar Publications

Highly Selective AIEgen-Based "Turn On" Fluorescent Imaging for Inflammation Detection.

Luminescence

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.

Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site.

View Article and Find Full Text PDF

Biosorption of heavy metals by microalgae: hazardous side effects for marine organisms.

Chemosphere

January 2025

ING PAN - Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Kraków, Senacka 1 Str., PL31002 Kraków, Poland.

Biosorption is nowadays recommended as an ecological and environmentally friendly alternative to remove metals from contaminated regions. Even in situ incubations of algae on the seabed are conducted to investigate potential future ways of reducing metal contamination. Our study investigated the negative effects on microorganisms when metal-enriched algae are released into the marine environment.

View Article and Find Full Text PDF

The utilization of hydrogen in safety conditions is crucial for the development of a hydrogen-based economy. Among all methodologies, solid-state hydrogen release from ammonia borane through thermal stimuli is very promising due to the high theoretical hydrogen release. Generally, carbonaceous or inorganic matrices have been used to tune the reactivity of ammonia borane.

View Article and Find Full Text PDF

Since 2011, Caribbean territories have experienced massive and repeated sargassum seaweed inundations. Once on shore, sargassum degradation through anaerobic metabolism elicits the release of many noxious molecules, including hydrogen sulfide (HS) and ammonia (NH). HS has been long recognized as a malodorous and highly toxic gas, while chronic exposure has not been extensively explored.

View Article and Find Full Text PDF

Since 2011, massive strandings of Sargassum (brown alga) have significantly affected Caribbean islands causing major health, environmental and economic problems. Amongst them, the degradation of algae releases corrosive gases, hydrogen sulphide (HS) and ammonia (NH) which causes an accelerated corrosion of the metallic structures of these coastal areas. The aim of this study was to quantify the impact of Sargassum strandings on the corrosion of three types of steels (DC01 carbon steel, 304L and 316L stainless steels) immersed for up to 120 days at various sites in Martinique which were gradually impacted by Sargassum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!