Traditional Chinese medicine (TCM) has a long history in stroke therapy and its therapeutic efficacy has been confirmed by clinical studies. The molecular basis of the neuroprotective effects is unknown. We wondered whether or not the neuroprotective effect of TCMs might be due to their N-methyl-D-aspartate (NMDA) receptor (NMDAR) antagonist properties. We used the patch-clamp technique to screen 22 TCM stroke drugs for NMDAR antagonist activity in cultured cortical neurons. The drugs were also screened for their ability to abate NMDA-induced neurotoxicity. Aqueous extracts of Scutellaria baicalensis, Stephania tetrandra, and Salvia miltiorrhiza blocked currents induced by NMDA (200 microM, 10 microM glycine, 0 Mg2+) at a holding potential of -80 mV by 83.45+/-4.34, 38.65+/-7.50, and 52.97+/-1.78%, respectively. The block of the NMDA-evoked currents was voltage-dependent and showed a negative slope conductance reminiscent of Mg2+. Atomic absorption spectrophotometry revealed the presence of 12.5, 2, and 8.7 mM Mg2+ in the extracts of S. baicalensis,S. tetrandra, and S. miltiorrhiza, respectively. None of these extracts blocked NMDA-induced neuronal death. The Uncaria rhynchophylla extract blocked NMDA-evoked currents by 54.98+/-8.61% even at +60 mV and reduced NMDA-induced neuronal death by 59.13+/-3.52%. NMDAR antagonist activity may underlie the neuroprotective effects of this TCM. Some TCM drugs may exert therapeutic effects due to their Mg2+ content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000068913 | DOI Listing |
ACS Chem Neurosci
January 2025
Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.
Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA.
Background And Purpose: Pituitary adenylate cyclase activating polypeptide (PACAP) is a human migraine trigger that is being targeted for migraine. The δ-opioid receptor (δ-receptor) is a novel target for the treatment of migraine, but its mechanism remains unclear. The goals of this study were to develop a mouse PACAP-headache model using clinically significant doses of PACAP; determine the effects of δ-receptor activation in this model; and investigate the co-expression of δ-receptors, PACAP and PACAP-PAC1 receptor.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disorder. In response to transforming growth factor-β (TGF-β), normal lung cells proliferate and differentiate into myofibroblasts, which are instrumental in promoting disease progression. Small interfering RNA (siRNA) targeting heat shock protein 47 (HSP47) has been demonstrated to alleviate IPF by blocking collagen synthesis and secretion.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, CNRS, ISCR-UMR6226, 35000 Rennes, France.
This study examines the chemical composition, antioxidant properties, and urease inhibitory effects of L. subsp. falezlez (Coss.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
G protein-coupled receptors (GPCRs) play essential roles in numerous physiological processes and are key targets for drug development. Among them, adhesion GPCRs (aGPCRs) stand out for their unique domain structures and diverse functions. ADGRG2 is a member of the aGPCR family and is involved in the regulation of various systems in the human body, including reproductive, nervous, cardiovascular, and endocrine systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!