Download full-text PDF

Source
http://dx.doi.org/10.1159/000068486DOI Listing

Publication Analysis

Top Keywords

polymorphisms glutathione
4
glutathione s-transferase
4
s-transferase mu1
4
mu1 gstm1
4
gstm1 theta1
4
theta1 gstt1
4
gstt1 genes
4
genes multiple
4
multiple myeloma
4
polymorphisms
1

Similar Publications

Infertility affects 10-15% of couples worldwide, with male factors accounting for half of cases. Environmental, behavioral, and genetic problems contribute to spermatogenic failure in 30% of idiopathic male infertility cases. Other factors, such as oxidative stress (OS), cause impaired spermatogenesis, abnormal sperm morphology, and reduced motility, eventually triggering male infertility.

View Article and Find Full Text PDF

wilt (VW) caused by (Vd) is a devastating fungal cotton disease characterized by high pathogenicity, widespread distribution, and frequent variation. It leads to significant losses in both the yield and quality of cotton. Identifying key non-synonymous single nucleotide polymorphism (SNP) markers and crucial genes associated with VW resistance in and , and subsequently breeding new disease-resistant varieties, are essential for VW management.

View Article and Find Full Text PDF

Introduction: Glutathione S-transferase (GST) has the ability to detoxify the cellular environment of xenobiotic compounds and by-products of oxidative stress. The expression levels of GST genes and their polymorphisms are associated with various human diseases. Methamphetamine and opiate addiction also account for a significant proportion of SUDs in Iran.

View Article and Find Full Text PDF

Background: This study investigates the association of single nucleotide polymorphism in glutathione S transferase P1 (rs1695 and rs1138272) and phosphatase and TENsin homolog (rs701848 and rs2735343) with the risk of colorectal cancer (CRC).

Patients And Methods: In this case-control study, 250 healthy controls and 200 CRC patients were enrolled. All subjects were divided into 3 groups: healthy control, patients, and overall (control + patients).

View Article and Find Full Text PDF

Background: Alteration in DNA repair and metabolism genes can affect the maintenance of DNA integrity or xenobiotics metabolism, potentially leading to DNA damage accumulation. The present study investigated the association between polymorphisms in Glutathione S-Transferase Pi 1 (GSTP1, rs1695) and O-6-Methylguanine-DNA Methyltransferase (MGMT, rs2308321) genes with urothelial bladder cancer (UBC) susceptibility and prognosis. Furthermore, the methylation patterns of the promoter region of these genes were analyzed in tumor and non-tumor bladder tissues, besides MGMT gene expression in tumor samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!