Background And Purpose: Hereditary hemorrhagic telangiectasia type 1 (HHT1) is an autosomal dominant vascular dysplasia caused by mutations in the endoglin gene and characterized by dilated vessels and arteriovenous malformations (AVMs). To understand the etiology of this disorder, we evaluated the cerebral vasculature of endoglin heterozygous (Eng+/-) mice, which represent the only animal model of HHT1.

Methods: The cerebral vasculature of Eng+/- and Eng+/+ mice from C57BL/6 (B6) and 129/Ola (129) strains with a differential susceptibility to HHT1 was studied with corrosion casting. Casts were observed by scanning electron microscopy to detect malformations and evaluate arterial diameters and orientation of endothelial nuclei. Measurements were taken to assess relative constriction at arteriolar branching points and downstream relative dilatation.

Results: Three of 10 Eng+/- mice demonstrated abnormal vascular findings including AVMs, while none of 15 Eng+/+ mice did. The incidence of relative constriction at arteriolar branching points was significantly less in both Eng+/- groups than in their Eng+/+ counterparts. The occurrence of relative dilatation was significantly greater in B6-Eng+/- than in B6-Eng+/+ mice. Endothelial nuclei were significantly rounder and deviated more from the direction of blood flow in Eng+/- than in Eng+/+ mice.

Conclusions: Eng+/- mice showed significant structural alterations in cerebral blood vessels, indicating that the level of endoglin on endothelium is critical for maintenance of normal vasculature. Since endoglin haploinsufficiency is associated with HHT1, such changes in arteriolar structures might occur in HHT1 patients and predispose them to AVMs and their sequelae.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.STR.0000056170.47815.37DOI Listing

Publication Analysis

Top Keywords

eng+/- mice
12
hereditary hemorrhagic
8
hemorrhagic telangiectasia
8
cerebral vasculature
8
vasculature endoglin
8
eng+/- eng+/+
8
eng+/+ mice
8
endothelial nuclei
8
relative constriction
8
constriction arteriolar
8

Similar Publications

Chromosome instability is a prevalent vulnerability of cancer cells that has yet to be fully exploited therapeutically. To identify genes uniquely essential to chromosomally unstable cells, we mined the Cancer Dependency Map for genes essential in tumor cells with high levels of copy number aberrations. We identify and validate KIF18A, a mitotic kinesin, as a vulnerability of chromosomally unstable cancer cells.

View Article and Find Full Text PDF

EGCG-Modified Bioactive Core-Shell Fibers Modulate Oxidative Stress to Synergistically Promote Vascularized Bone Regeneration.

ACS Biomater Sci Eng

January 2025

Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, PR China.

Oxidative stress induced by reactive oxygen species (ROS) can adversely affect tissue repair, whereas endowing biomaterials with antioxidant activity can improve the in vivo microenvironment, thereby promoting angiogenesis and osteogenesis. Accordingly, this study utilized epigallocatechin-3-gallate (EGCG), a material known for its reducing properties, oxidative self-polymerization capability, and strong binding characteristics, to modify a bioactive core-shell fibrous membrane (10RP-PG). Compared to the 10RP-PG fibrous membrane, the EGCG-modified fibrous membrane (E/10RP-PG) exhibited superior hydrophilicity, excellent cell adhesion, and compatibility.

View Article and Find Full Text PDF

A Polysaccharide-Calcium Carbonate Microsphere-Doped Hydrogel for Accelerated Diabetic Wound Healing via Synergistic Glucose-Responsive Hypoglycemic and Anti-Inflammatory Effects.

ACS Biomater Sci Eng

January 2025

Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China.

Article Synopsis
  • Long-term hyperglycemia and inflammation in diabetes often lead to chronic wounds that do not heal, but a new hydrogel with plant polysaccharides shows promise in promoting healing.
  • This hydrogel, PL-PVA/DOP-CaCO, is engineered to release insulin in response to high glucose levels and has anti-inflammatory properties, enhancing the wound healing process.
  • In studies, this hydrogel improved healing in diabetic rats by regulating blood sugar, reducing inflammation, and boosting the growth of cells essential for wound recovery.
View Article and Find Full Text PDF

Background: Type 1 diabetes (T1D) results in autoreactive T cells chronically destroying pancreatic islets. This often results in irreplaceable loss of insulin-producing beta cells. To reverse course, a combinatorial strategy of employing glucose-responsive insulin restoration coupled with inhibiting autoreactive immune responses is required.

View Article and Find Full Text PDF

Polymer based nanoformulations offer substantial prospects for efficacious chemotherapy delivery. Here, we developed a pH-responsive polymeric nanoparticle based on acidosis-triggered breakdown of boronic ester linkers. A biocompatible hyaluronic acid (HA) matrix served as a substrate for carrying a doxorubicin (DOX) prodrug which also possesses natural affinity for CD44 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!