The influence of freshwater environment on muscle growth in seawater was investigated in an inbred population of farmed Atlantic salmon (Salmo salar L.). The offspring from a minimum of 64 families per group were incubated at either ambient temperature (ambient treatment) or in heated water (heated treatment). Growth was investigated using a mixed-effect statistical model with repeated measures, which included terms for treatment effect and random fish effects for individual growth rate (alpha) and the instantaneous growth rate per unit change in temperature (gamma). Prior to seawater transfer, fish were heavier in the heated (61.6+/-1.0 g; N=298) than in the ambient (34.1+/-0.4 g; N=206) treatments, reflecting their greater growth opportunity: 4872 degree-days and 4281 degree-days, respectively. However, the subsequent growth rate of the heated group was lower, such that treatments had a similar body mass (3.7-3.9 kg) after approximately 450 days in seawater. The total cross-sectional area of fast muscle and the number (FN) and size distribution of the fibres was determined in a subset of the fish. We tested the hypothesis that freshwater temperature regime affected the rate of recruitment and hypertrophy of muscle fibres. There were differences in FN between treatments and a significant age x treatment interaction but no significant cage effect (ANOVA). Cessation of fibre recruitment was identified by the absence of fibres of <10 micro m diameter. The maximum fibre number was 22.4% more in the ambient (9.3 x 10(5)+/-2.0 x 10(4) than in the heated (7.6 x 10(5)+/-1.5 x 10(4)) treatments (N=44 and 40 fish, respectively; P<0.001). For fish that had completed fibre recruitment, there was a significant correlation between FN and individual growth rate, explaining 35% of the total variation. The density of myogenic progenitor cells was quantified using an antibody to c-met and was approximately 2-fold higher in the ambient than in the heated group, equivalent to 2-3% of the total muscle nuclei. The number of myonuclei in isolated fibre segments showed a linear relationship with fibre diameter. On average, there were 20.6% more myonuclei in 200-microm-diameter fibres isolated from the ambient (3734 myonuclei cm(-1)) than from the heated (3097 myonuclei cm(-1)) treatments. The maximum fibre diameter was greater in heated than in ambient groups, whereas the age x treatment interaction was not significantly different (ANCOVA). There were also no consistent differences in the rate of hypertrophy of muscle fibres between treatments. It was concluded that freshwater temperature regime affected fibre number and the nuclear content of fast muscle in seawater but not the rate of fibre hypertrophy. The mechanisms and life history consequences of developmental plasticity in fibre number are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.00262 | DOI Listing |
Chaos
January 2025
Physics Institute, University of São Paulo, 05508-090 São Paulo, SP, Brazil.
In this work, we investigate the dynamics of a discrete-time prey-predator model considering a prey reproductive response as a function of the predation risk, with the prey population growth factor governed by two parameters. The system can evolve toward scenarios of mutual or only of predators extinction, or species coexistence. We analytically show all different types of equilibrium points depending on the ranges of growth parameters.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
DWI─Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany.
The global dental implant market is projected to reach $9.5 billion by 2032, growing at a 6.5% compound annual growth rate due to the rising prevalence of dental diseases.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China.
Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated.
View Article and Find Full Text PDFAnesthesiology
January 2025
Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA.
Background: Longitudinal Milestones data reported to the Accreditation Council for Graduate Medical Education (ACGME) provide a structured framework for assessing the developmental progression of residents in key competencies and subcompetencies. This study aims to investigate the previously underexplored longitudinal reliability of Milestones data, with the goal of identifying patterns in learning trajectories that can inform targeted interventions for residents and programs.
Methods: We conducted a retrospective cohort study with national anesthesiology Milestones data collected from 2014 to 2020.
Background: Liver malignancies present substantial challenges to surgeons due to the extensive hepatic resections required, frequently resulting in posthepatectomy liver failure. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) was designed to increase the resectable liver volume, yet it is associated with significant mortality and morbidity rates. Recently, minimally invasive techniques have been incorporated into ALPPS, with the potential to improve the procedure's safety profile whilst maintaining efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!