A striking feature of phenotype II in congenital sucrase-isomaltase deficiency is the retention of the brush border protein sucrase-isomaltase (SI) in the cis-Golgi. This transport block is the consequence of a glutamine to proline substitution at amino acid residue 1098 of the sucrase subunit. Here we provide unequivocal biochemical and confocal data to show that the SI(Q/P) mutant reveals characteristics of a temperature-sensitive mutant. Thus, correct folding, competent intracellular transport, and full enzymatic activity can be partially restored by expression of the mutant SI(Q/P) at the permissive temperature of 20 degrees C instead of 37 degrees C. The acquisition of normal trafficking and function appears to utilize several cycles of anterograde and retrograde steps between the endoplasmic reticulum and the Golgi implicating the molecular chaperones calnexin and heavy chain-binding protein. The data presented in this communication are to our knowledge the first to implicate a temperature-sensitive mutation in an intestinal enzyme deficiency or an intestinal disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.C300093200DOI Listing

Publication Analysis

Top Keywords

glutamine proline
8
amino acid
8
acid residue
8
residue 1098
8
1098 sucrase
8
endoplasmic reticulum
8
proline exchange
4
exchange amino
4
sucrase temperature-sensitive
4
temperature-sensitive arrest
4

Similar Publications

The "a" determinant, a highly conformational region within the hepatitis B virus large surface protein (LHBs), is crucial for antibody neutralization and diagnostic assays. Mutations in this area can lead to conformational changes, resulting in vaccination failure, diagnostic evasion, and disease progression. The "a" determinant of LHBs contains a conserved N-linked glycosylation site at N320, but the mechanisms of glycosylation in LHBs remain unclear.

View Article and Find Full Text PDF

Impact of NPK fertilization on the metabolomic profile and nutritional quality of Portulaca oleracea L. using nuclear magnetic resonance analysis.

Plant Physiol Biochem

December 2024

Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, 04960, Ciudad de México, Mexico.

Purslane is a plant with high nutritional content that is mainly produced in the central part of Mexico. The nutritional content of purslane depends on various factors such as climatic and soil conditions, phenology, and fertilization. This article describes the H NMR metabolomics profiling of purslane in relation to fertilization at two harvest stages: C and C (27 and 42 days after emergence).

View Article and Find Full Text PDF

Structural plasticity of the coiled-coil interactions in human SFPQ.

Nucleic Acids Res

December 2024

School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.

The proteins SFPQ (splicing Factor Proline/Glutamine rich) and NONO (non-POU domain-containing octamer-binding protein) are mammalian members of the Drosophila Behaviour/Human Splicing (DBHS) protein family, which share 76% sequence identity in their conserved 320 amino acid DBHS domain. SFPQ and NONO are involved in all steps of post-transcriptional regulation and are primarily located in mammalian paraspeckles: liquid phase-separated, ribonucleoprotein sub-nuclear bodies templated by NEAT1 long non-coding RNA. A combination of structured and low-complexity regions provide polyvalent interaction interfaces that facilitate homo- and heterodimerisation, polymerisation, interactions with oligonucleotides, mRNA, long non-coding RNA, and liquid phase-separation, all of which have been implicated in cellular homeostasis and neurological diseases including neuroblastoma.

View Article and Find Full Text PDF

Inhibitory Effects of Gliadin Hydrolysates on BACE1 Expression and APP Processing to Prevent Aβ Aggregation.

Int J Mol Sci

December 2024

Department of Nutrition, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 40604, Taiwan.

Alzheimer's disease (AD), a leading neurodegenerative disorder, is closely associated with the accumulation of amyloid-beta (Aβ) peptides in the brain. The enzyme β-secretase (BACE1), pivotal in Aβ production, represents a promising therapeutic target for AD. While bioactive peptides derived from food protein hydrolysates have neuroprotective properties, their inhibitory effects on BACE1 remain largely unexplored.

View Article and Find Full Text PDF

Metabolic characteristics of prostate cancer cells with high metastatic potential revealed by (S)-ethyl 1-(3-(4-chlorophenoxy)-2-hydroxypropyl)-3-(4-methoxyphenyl)-1H-pyrazole-5-carboxylate inhibition.

J Pharm Biomed Anal

December 2024

School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, PR China.

A small molecule, (S)-ethyl 1-(3-(4-chlorophenoxy)-2-hydroxypropyl)-3-(4-methoxyphenyl)-1H-pyrazole-5-carboxylate (SEC), has been reported to be capable of suppressing metastasis of prostate cancer (PCa) cells. In this study, SEC was used to study the metabolic responses of PCa cell lines (LNCaP, PC3, and DU145) with different metastatic potential and the alterations of mTOR, p-mTOR, AMPK, and p-AMPK levels, when the PCa cells were inhibited. The ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS)-based analysis showed that SEC induced the decreases of intracellular metabolites including glutamic acid, glutamine, and histidine (LNCaP); creatinine, citric acid/isocitric acid, and aspartic acid (PC3); and spermidine, S-hydroxymethylglutathione, LPE (20:3), and palmitic amide (DU145), and the increases of intracellular LPC (18:0) (LNCaP); tyrosine, pyroglutamic acid/pyrroline hydroxycarboxylic acid (PC3); and tyrosine, phenylalanine, phenylacetylglycine, spermine, histidine, and choline (DU145).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!