Long-term exposure of uninephrectomized rats to desoxycorticosterone acetate (DOCA)/salt induces cardiac fibrosis and hypertrophy through mineralocorticoid receptors (MRs). However, the underlying cellular mechanisms remain unclear. To determine whether Na/H exchange isoform 1 (NHE1) is involved in the cellular mechanisms, we examined the effects of a specific NHE1 inhibitor, cariporide, and an MR antagonist, spironolactone, on DOCA/salt-induced cardiac fibrosis and hypertrophy. Uninephrectomized rats were given 20 mg of DOCA (single subcutaneous injection) plus 0.9% NaCl/0.3% KCl to drink and were killed at 8 days. Two groups of rats given DOCA/salt were treated with either spironolactone (50 mg/kg per day SC) or cariporide (30 mg/kg per day PO) for 8 days. Control rats were treated with only high salt after the operation. The DOCA/salt-induced perivascular collagen deposition was completely abolished by cariporide and spironolactone. DOCA/salt-induced interstitial collagen deposition was partially and completely suppressed by spironolactone and cariporide, respectively. The rats exposed to DOCA/salt had cardiocyte hypertrophy in the subendocardial and subepicardial regions, a finding that was completely inhibited by cariporide but not by spironolactone. In rats given DOCA/salt, NHE1 protein expression was markedly increased. This was partially and completely reversed by spironolactone and cariporide, respectively. We concluded that cardiac NHE1 contributes to DOCA/salt-induced cardiac fibrosis and hypertrophy and that the NHE1 inhibitor cariporide completely prevents the detrimental effects of DOCA/salt on the heart. We also demonstrated that DOCA/salt-induced cardiac injury through the MRs partly occurs through NHE1 activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.HYP.0000056769.73726.E5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!